

MITIGATION PLAN

Final

September 2020

Bug Headwaters Mitigation Site Wilkes County, NC NCDEQ Contract No. 7617 DMS ID No. 100084

Yadkin River Basin HUC 03040101

USACE Action ID No. SAW-2018-01788

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

September 18, 2020

Regulatory Division

Re: NCIRT Review and USACE Approval of the NCDMS Bug Headwaters Mitigation Site / Wilkes Co./ SAW-2018-01788/ NCDMS Project # 100084

Mr. Tim Baumgartner North Carolina Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

Dear Mr. Baumgartner:

The purpose of this letter is to provide the North Carolina Division of Mitigation Services (NCDMS) with all comments generated by the North Carolina Interagency Review Team (NCIRT) during the 30-day comment period for the Bug Headwaters Draft Mitigation Plan, which closed on July 23, 2020. These comments are attached for your review.

Based on our review of these comments, we have determined that no major concerns have been identified with the Draft Mitigation Plan, which is considered approved with this correspondence. However, several minor issues were identified, as described in the attached comment memo, which must be addressed in the Final Mitigation Plan.

The Final Mitigation Plan is to be submitted with the Preconstruction Notification (PCN) Application for Nationwide permit approval of the project along with a copy of this letter. Issues identified above must be addressed in the Final Mitigation Plan. All changes made to the Final Mitigation Plan should be summarized in an errata sheet included at the beginning of the document. If it is determined that the project does not require a Department of the Army permit, you must still provide a copy of the Final Mitigation Plan, along with a copy of this letter, to the appropriate USACE field office at least 30 days in advance of beginning construction of the project. Please note that this approval does not preclude the inclusion of permit conditions in the permit authorization for the project, particularly if issues mentioned above are not satisfactorily addressed. Additionally, this letter provides initial approval for the Mitigation Plan, but this does not guarantee that the project will generate the requested amount of mitigation credit. As you are aware, unforeseen issues may arise during construction or monitoring of the project that may require maintenance or reconstruction that may lead to reduced credit.

Thank you for your prompt attention to this matter, and if you have any questions regarding this letter, the mitigation plan review process, or the requirements of the Mitigation Rule, please call me at 919-554-4884, ext 60.

Sincerely,

Kim Browning Mitigation Project Manager *for* Ronnie Smith, Deputy Chief USACE Regulatory Division

Enclosures

Electronic Copies Furnished:

NCIRT Distribution List Paul Wiesner, Matthew Reid—NCDMS Jeff Keaton—WEI

September 18, 2020

U.S. Army Corps of Engineers Regulatory Division Raleigh Field Office 3331 Heritage Trade Drive, Suite 105 Wake Forest, NC 27587

Attention: Kim Browning

Subject: Mitigation Plan Report and Construction Plans Bug Headwaters Mitigation Project, Wilkes County Yadkin River Basin HUC 03040101 USACE Action ID No. SAW-2018-01788/DWR No. 2018-1273

Dear Kim:

We have reviewed the IRT's comments on the draft mitigation plan for the Bug Headwaters Stream Mitigation Site. We have made the necessary revisions to the draft documents and we are submitting revised versions of the documents along with this letter. Below are responses to each of the IRT's comments in your letter dated August 28, 2020. Your original comments are provided below followed by our responses in bold italics.

USACE Comments, Kim Browning:

1. Please include the NCSAM forms and a brief summary in the text.

NCSAM forms are included in Appendix 1 and ratings are included in the Reach Summary tables.

2. Design Sheet 3.0: In the future, please include the indicator status in the planting list (FAC, FACW, etc.).

We have added the indicator status to the planting list.

3. Please provide a veg plot along Big Bugaboo Creek reach 3 in the wetland planting zone 4.

A veg plot has been moved into wetland planting zone 4.

4. Planting List: Please eliminate silver maple from the planting list –it is very limited in North Carolina, and it wouldn't be found on the smaller tributaries. Additionally, it would be preferable to reduce the percentage of sycamore planted to less than 20%.

Sliver maple has been removed from the planting list and sycamore reduced to 18%.

5. UT1: given the small drainage area (7 acres) and that this reach is intermittent, please move the flow gauge to the upper 1/3 of this reach.

The flow gauge on UT1 has been moved to the upper 1/3 of the reach.

6. UT2B: It in unclear from the description on page 10 whether this reach is spring-fed, and given the very small drainage area, flow is a concern. If you do not plan to install a flow gauge on this reach, please be sure to use photos/video to document flow. Small reaches with such small drainage areas really should have a flow gauge. Both consecutive days flow and cumulative days should be documented.

A flow gauge has been added to UT2B to the upper 1/3 of the reach. Both consecutive days and cumulative days will be documented.

7. There are many existing headwater forest wetlands within the easement and stream relocation is estimated to impact approximately 1.343 acres. Though it is anticipated that the total wetland acreage will increase as a result of stream restoration, the Corps must still ensure that there is no net loss of wetlands. If you do not plan to install wetland gauges and monitor hydrology, please plan to reverify the extent of jurisdiction at the end of the monitoring period to document that wetland acreage was not lost.

After our conversation with you on September 10th and some additional consideration, we have decided not to install gauges to monitor hydrology but we will verify the extent of jurisdiction during MY5 monitoring and include the information from that verification in the MY5 report.

8. Table 9: Please summarize the total impacts, both temporary and permanent.

This revision has been made.

9. August 28, 2020 I corresponded with Byron Hamstead, FWS, regarding the bog turtle and Rusty Patched Bumble Bee locations in Wilkes County. His reply was that both bog turtle and rusty patched bumble bee are not subject to Section 7 requirements and there would only be concerns for bog turtle if its habitat was disturbed and impact avoidance was not possible. In which case a survey would be requested. I did confirm that there were proposed impacts to existing wetlands, but that the wetlands have been negatively impacted by cattle and that it was very unlikely that BT habitat was present. This correspondence will serve as documentation that threatened and endangered species were considered.

Thank you for providing this information.

10. Section 3.4: The Corps issued the PJD June 21, 2020.

The PJD date is now included in Section 3.4.

11. Section 3.7: Another item for discussion could be the wetland enhancement and potential bog turtle habitat that may arise from stream restoration and cattle exclusion.

A sentence has been added to Section 3.7 to discuss potential wetland enhancement and bog turtle habitat that may develop.

12. Section 3.8: Do the adjacent agricultural fields to the north provide a sediment source? I appreciate the thoughtfulness of this section.

We don't think this will be a significant problem but text has been added to this section to discuss the issue.

13. Table 20: the 30-days of consecutive flow applies to all intermittent channels, annually, not just on restored reaches. Intermittent streams dry seasonally and should demonstrate flow for periods longer than 30 consecutive days.

We understand from this comment and from our phone conversation that, while we are not required to install gauges on intermittent EII streams, that we may be asked to provide information to support the intermittent status of streams such as UT2 Reach 1. We are not proposing a flow gauge on this stream at this time, however, if it becomes necessary to document flow, we will add a gauge. There was already a gauge planned for the upper third of UT2A Reach 2 which is an intermittent restoration reach and should also represent UT2A Reach 1 which is an intermittent enhancement reach.

DWR Comments, Erin Davis:

1. DWR appreciates that the site's conservation easement was expanded to include many of the stream origins and riparian wetland areas.

Thanks for noting that.

2. Page 4, Section 3.3 – Please reference the completion of NC SAM in this section and include the NC SAM field assessment forms and rating sheets in Appendix 1.

NC SAM is included in Appendix 1 and in the Reach Summary tables.

3. Page 13, Section 3.6 – a. Are there any existing stream culvert crossings that will be removed, relocated or replaced?

This information has been added to Table 6.

b. Was there any discussion with the utility provider about the possibly of relocating the overhead line right-of-way to along Austin Traphill Road?

No, there was no discussion with the utility company.

4. Page 15, Table 7 – Are vernal pools being proposed? If so, please provide additional design details.

We have not planned any excavation of vernal pools on the site.

5. Page 16, 5.1 – Why couldn't the Big Bugaboo Creek Reach 2 stream crossing be shifted upstream to avoid permanent wetland impacts/loss?

The landowner requested the crossings on Big Bugaboo Reach 2 and UT2 Reach 5 be constructed specifically at the locations they are shown on Figure 7. This will allow him to corral and route cattle across those creeks in a similar way to how he currently does that using the existing fenced-in area in that portion of his pasture.

6. Page 18, Table 10 – Based on the planting plan, it appears only supplemental planting is proposed for UT4. Correct?

The left floodplain of UT4 will be planted with the species in the Buffer Planting Zone table. The right floodplain is currently wooded and is not planned to be planted.

7. Page 22, Table 15 – Are there any concerns about the long-term stability and adequate sediment transport along UT3 with the high design sinuosity shown on Sheets 1.38 - 1.44?

No, this reach is a little flatter that most other reaches on the site and therefore was made to be a slightly more sinuous C stream type. The sinuosity is appropriate for a C stream type.

8. Page 24, Section 6.6 - Has the amount of available onsite woody material for proposed stream stabilization and habitat structures been evaluated? If necessary, will offsite woody material be sourced to complete construction of all of the structures shown on the design sheets?

We believe most of the woody material for construction can be sourced onsite. Some woody material may be needed from an offsite source. We generally do not substitute rock for wood for instream structures. However, if large enough boulders are available onsite, a few substitutions may be practical. Any changes to structure materials will be noted in the As-Built Baseline Report.

9. Page 27-28, UT5 & UT6 – Understanding that these reaches are not for credit, can you please include the existing/proposed reach length in the narrative.

This information has been added.

10. Page 28, Section 6.7 – Please reference the planting window specified in the 2016 NCIRT Mitigation Update Guidance.

Planting will fall outside the 2016 NCIRT Mitigation Update Guidance due to the construction timeline. Construction is expected to finish in April. Planting will be conducted soon after, but no later than April 30, 2020.

11. Page 29, Table 19 – Based on the described UT4 existing conditions and proposed work, DWR believes that 4:1 is a more appropriate credit ratio for this reach.

This change has been made.

12. Page 30, Table 20 – Please note the flow performance standard is for "each year".

"For each year" has been added to the flow performance standard in Table 20.

13. Page 31, Section 10 – Please specify an expected maximum duration between "periodic" inspections.

Quarterly inspections are expected each year. This information has been added to Section 10.

14. Page 32, Section 11 - DWR's General Water Quality Certification 4134 requires notification for any repairs that result in a change from the approved plans.

Thank you for pointing that out.

15. Figure 10 – Please shift the intermittent reach flow gauges at least 50 feet upstream. Also, please show existing wetlands.

Flow gauges on intermittent reaches have been moved to the upper 1/3 of the reach. Existing wetlands are now shown on Figure 10.

- 16. Sheet 0.3 -
- a. Are channel plugs proposed? If so, please indicate approximate locations and include atypical detail.

Channel plugs are not proposed. Properly compacted native soil and brush toes are all that is required to ensure stable banks for the new channel.

b. Also, there were no "fill existing channel" callouts. It would help our review to see the existing channel areas proposed to be filled as a shaded feature on the plan view sheets. Note that if partial filling is proposed, the final grade in these areas should be designed to seasonally dry.

We have added "Fill existing channel" callouts to the plan sheets. We prefer not to hatch or shade the existing channel. We did that in response to your comment on the recent Lyon Hills mitigation plan submittal. However, it made it very difficult to see proposed grading and other information on portions of the plans, so we removed it from the final construction documents. 17. Sheet 1.01 – Is the Swale callout actually for a Rock Floodplain Outlet? If so, please update the text. If not, please add a Swale typical detail. (Same comment for Sheet1.21)

The swale is the outlet channel for the BMP. There is a BMP detail on sheet 2.01. We have added typical cross sections for the swales to the BMP details.

18. Sheet 1.15 – Are two existing channels converging on this sheet? There appears to be four existing top of bank lines.

There are two converging existing channels shown on this sheet. The larger channel is the mainstem of Big Bugaboo Creek and the other is the channel that connects the overflow spillway of the pond back into Big Bugaboo Creek. The pond and the overflow spillway and channel will be removed during construction.

19. Sheet 1.20 – Are there any concerns about the long-term stability of the sharp bend on Big Bugaboo Creek Reach 4 just downstream of the UT4 confluence?

There are no concerns based on past field evaluations of this stream and there are existing trees on the outside of the bend. If it appears unstable during construction, we will take measures to stabilize it.

20. Sheet 1.37 – Why wasn't the steam origin of UT2B able to be captured within the conservation easement?

We started the conservation easement at the point the stream becomes jurisdictional. However, we will fence out the non-jurisdictional portion of the channel upstream of the easement as long as the landowner will allow that.

21. Sheet 2.00 – Either on the design sheet or in the mitigation plan text, please indicate that the proposed BMPs are designed to not require long-term maintenance.

A sentence has been added to Appendix 10 – Maintenance plan stating that the BMPs are not expected to require maintenance.

22. Sheets 2.01 & 2.02–Are these BMPs designed to wet year-round? They are not included in the planting plan, but please confirm at minimum the side slopes will be vegetated. DWR would like to see planting within the BMP bed, if possible.

We have added herbaceous plugs to the side slopes and this is now included in the planting plan. If they are observed to hold water most or all of the time, we will install live stakes on the side slopes as well.

23.Sheet 3.0 -

a. DWR understands that quantity substitutions maybe necessary based on the nursery's species available. However, we request that no species account for more than 20 percentage of a specified planting zone in order to promote diversity.

We do not have any species that accounts for more than 20% of the riparian buffer and wetland planting zones. Any substitutions will be noted in the As-Built Baseline Report.

b. Have you had success planting *Helesia tetraptera* in restoration wetland areas? I was not able to identify its wetland indicator status.

Helesia tetrapterain has been removed from the planting list.

24. Sheet 6.0 – What are the proposed stone size(s) for the Rock Floodplain Outlet?

The proposed stone sizes have been added to the detail on Sheet 6.05

25. Design Sheets–Please include an overall fencing plan indicating existing and proposed fencing and approximate locations of anticipated gates.

The fencing plan is included in the revised plans included in this submittal.

Please contact me at 919-851-9986 x103 if you have any questions.

Thank you,

Aubtros

Jeff Keaton, PE Project Manager

FINAL MITIGATION PLAN

Bug Headwaters Mitigation Site

Wilkes County, NC NCDEQ Contract No. 7617 DMS ID No. 100084 Yadkin-Pee Dee River Basin HUC 03040101 USACE Action ID No. SAW-2018-01788

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

Wildlands Engineering, Inc. 312 W Millbrook Road, Suite 225 Raleigh, NC 27609 Phone: (919) 851-9986

September 2020

This mitigation plan has been written in conformance with the requirements of the following:

- Federal rule for compensatory mitigation project sites as described in the Federal Register Title 33 Navigation and Navigable Waters Volume 3 Chapter 2 Section § 332.8 paragraphs (c)(2) through (c)(14).
- NCDEQ Division of Mitigation Services In-Lieu Fee Instrument signed and dated July 28, 2010.

These documents govern DMS operations and procedures for the delivery of compensatory mitigation.

Contributing Staff:

Jeff Keaton, PE, Project Manager Nicole Millns, PE, CFM, Lead Designer Shawn Wilkerson, Principal in Charge Carolyn Lanza, Lead Scientist Angela Allen, PE, Lead Quality Assurance

TABLE OF CONTENTS

Execut	tive Summary	. i
1.0	Introduction	
2.0	Watershed Approach and Site Selection	1
3.0	Baseline and Existing Conditions	2
3.:	1 Watershed Conditions	2
3.2	2 Geology and Soils	3
3.3	3 Existing Stream Conditions	4
3.4	4 Existing Wetlands 1	12
3.	5 Existing Vegetation 1	13
3.0	5 Utilities, Site Access, and Site Constraints1	13
3.		
3.8	5	
4.0	Goals and Objectives1	.5
5.0	Regulatory Considerations1	.7
5.3	1 401/404	17
5.2		
6.0	Project Site Mitigation Plan 1	
6.:	1 Design Overview 1	-8
6.2		
6.3	3 Design Discharge Analysis 2	20
6.4	Design Channel Morphological Parameters	21
6.	5 Sediment Transport Analysis 2	24
6.0	5 Design Summary	25
6.		
7.0	Determination of Credits	-
8.0	Performance Standards	
9.0	Monitoring Plan	
10.0	Long-Term Management Plan	
11.0	Adaptive Management Plan	3
12.0	References	34

TABLES

Table 1: Project Information	1
Table 2: Project Watershed Summary Information	2
Table 3: Drainage Areas and Associated Land Use	3
Table 4: Project Soil Types and Descriptions	4
Table 5: Existing Riparian Vegetation	13
Table 6: Easement Breaks and Crossings	14
Table 7: Mitigation Goals and Objectives	
Table 8: Project Attribute Table Part 4	17
Table 9: Estimated Impacts to Project Wetlands	17
Table 10: Stream Stressors and Restoration Approach	18
Table 11: Reference Reach Summary	20
Table 12: Summary of Design Bankfull Discharge Analysis for Big Bugaboo Creek	20
Table 13: Summary of Design Bankfull Discharge Analysis for Tributaries	21
Table 14: Summary of Design Morphologic Parameters for Reference Group 1	22
Table 15: Summary of Design Morphologic Parameters for Reference Group 2	

Table 16: Summary of Design Morphologic Parameters for Reference Group 3	24
Table 17: Results of Competence Analysis	25
Table 18: Results of Competence Analysis	25
Table 19: Determination of Credits	30
Table 20: Summary of Performance Standards	31
Table 21: Monitoring Requirements	32

FIGURES

- Figure 1 Vicinity Map
- Figure 2 Site Map
- Figure 3 Watershed Map
- Figure 4 Topo Map
- Figure 5 Soils Map
- Figure 6 Existing Conditions Map
- Figure 7 Concept Design Map
- Figure 8 Reference Reach Map
- Figure 9 Design Discharge Analysis Graph
- Figure 10 Proposed Monitoring Components Map

APPENDICES

- Appendix 1 Stream Assessment Forms
- Appendix 2 Existing Conditions Cross Sections
- Appendix 3 Jurisdictional Determination and Supporting Forms
- Appendix 4 Categorical Exclusion and Regulatory Correspondence
- Appendix 5 Post-Contract Site Walk Meeting Summary
- Appendix 6 Morphological Data Tables
- Appendix 7 Credit Release Tables
- Appendix 8 Site Protection Instrument
- Appendix 9 Financial Assurances
- Appendix 10 Maintenance Plan

1.0 Introduction

The Bug Headwaters mitigation site is in a rural area of the Yadkin River Basin (Cataloging Unit 03040101) in Northeast Wilkes County approximately 9.5 miles northwest of the Town of Elkin (Figure 1). The site is on two adjacent crop and livestock farms in the foothills of the Blue Ridge Mountains. It is near the border of the piedmont and mountain physiographic regions but is technically in the piedmont. The proposed project will include restoration and enhancement of a network of streams on the property that range in drainage area from less than seven acres to 322 acres. These include the headwaters of Big Bugaboo Creek as well as eight unnamed tributaries to Big Bugaboo Creek, seven of which originate within the project limits (Figure 2). Restoration will be performed on 6,226 LF of stream and enhancement will be performed on 2,875 LF of stream. In addition, two in-line farm ponds will be removed and four stormwater treatment best management practices (BMPs) will be constructed on the site. The project will provide a total of 7,589.533 cool water stream credits. General project information can be found in Table 1 below.

The Bug Headwaters Mitigation Site was instituted via NCDEQ-DMS RFP # 16-007406. As approved by the NCIRT, all projects contracted under the 16-007406 RFP have a cool or warm service type. Penalties will not be assessed for using these project mitigation credits to satisfy cool or warm requirements.

Project Name	Bug Headwaters Mitigation Site
County	Wilkes
Project Area (acres)	22.50
Project Coordinates (latitude and longitude)	36.32139 °N, 80.98432 °W
Planted Acreage (acres of woody stems planted)	18.33

Table 1: Project Information

2.0 Watershed Approach and Site Selection

The site was selected for development as a mitigation project due to the potential to offset documented stressors within the watershed. The Site is located at the upstream extent of the Big Bugaboo Creek 14digit HUC (03040101070010). Watershed characteristics are summarized in Table 2. The project is located in a targeted local watershed (TLW) but is not in a local watershed planning (LWP) area. The HUC is described in the 2009 Upper Yadkin-Pee Dee River Basin Restoration Priorities (RBRP) document (NC DMS, 2009). According to the RBRP, heavy agricultural land use is a major stressor to aquatic resources in this watershed, including over 44% agricultural land cover and 15 animal operations. It is also noted that 25% of riparian buffers are non-forested and that, although the HUC contains water supply watershed (WSW) waters, only one percent of its land area is conserved. Stressors described for the 8-digit CU include nonexistent or degraded riparian buffers as well as erosion and sedimentation (including erosion from pasture lands), which both significantly contribute to habitat degradation and water quality impairment. Turbidity and fecal coliform bacterial violations have been documented across the CU. The RBRP primary watershed restoration goals include improvement of water quality and aquatic habitat in impaired stream segments, implementation of stream and riparian buffer restoration and enhancement, and implementation of agricultural and water quality BMPs to limit sediment, nutrient, and fecal coliform contributions to streams from active farming operations.

Table 2: Project Watershed Summary Information

Physiographic Province	Piedmont		
River Basin	Yadkin		
USGS Hydrologic Unit 8-Digit	03040101		
USGS Hydrologic Unit 14-digit	03040101070010		
DWR Sub-basin	03-07-01		
Project Drainage Area (acres and square miles)	322 ac, 0.50 sq. mi.		
Project Drainage Area Percentage Impervious Area	<1%		
CGIA Land Use Classification	12% Forested; 84% Agriculture; 2% Herbaceous/Grassland; 2% Developed		

The Site (Figure 2) is located in DWR Sub-basin 03-07-01. The 2008 Yadkin-Pee Dee River Basinwide Water Quality Plan (NC DWR, 2008) indicates that fecal coliform concentrations often exceeded the maximum regulatory limit in the CU, which creates a potential health risk. The plan also notes that major stressors in the Yadkin River Basin include excessive sedimentation and changes in hydrology and geomorphology due to urban development and agriculture. Agriculture was identified in the plan as the most significant stressor leading to water quality degradation in the Yadkin River basin.

The Yadkin River basin is also discussed in the 2015 North Carolina Wildlife Resource Commission's (NCWRC) Wildlife Action Plan (WAP). The WAP notes that streams in the basin are being impacted by excessive sedimentation and nutrient inputs due to a number of factors including agriculture. The WAP discusses the importance of habitat conservation and restoration to address current problems affecting species and habitats and specifically mentions a key management practice is working with farmers to reduce erosion and fence cattle out of streams (NCWRC, 2015).

This site was selected because it provides an opportunity to address watershed stressors identified in each of these three planning documents. Specific project goals are discussed below in Section 4.

3.0 Baseline and Existing Conditions

3.1 Watershed Conditions

The project includes the headwaters of Big Bugaboo Creek (Figure 3). All project reaches and the majority of the watershed areas are contained within two farms, the larger of which is owned by Horace Randle Wood while the smaller is owned by Gaye Swaim. Mr. Wood has owned the property and used it exclusively to graze cattle since 2012. His property was historically used for grazing cattle (at least as far back as the 1980's) though tobacco was also cultivated on small sections of the property. Today, the Wood property remains mostly non-forested cattle pasture and cattle have access to all surface waters on the property other than a 2.97-acre pond (Pond A) just below the confluence of Big Bugaboo Creek and UT2 and short reaches of both of these streams just upstream of the pond. The cattle access has caused severe damage to most of the streams. The Swaim property has been in the family for over 60 years and has primarily been used for row crop agriculture. It is currently used to cultivate corn and soybeans. There is an in-line pond (Pond B) on the Swaim property that receives a heavy sediment load whenever the fields are tilled because there is no vegetated buffer to protect the pond. The remaining portions of the watershed outside of the Wood and Swaim properties are mostly cleared and used for pasture and row crops, although there is a pocket of forested area on the southeastern side of the watershed and wooded riparian corridors are present on the far upstream and downstream ends of the project. Drainage areas for the project reaches were delineated using QL1 LiDAR data and land use was

calculated using the National Land Cover Database (NLCD) for 2011. Drainage areas and land cover classifications are summarized in Table 3 below.

The project watersheds (Figure 3) are drained by a dense, dendritic network of streams typical for the North Carolina piedmont. There is a significant amount of relief on the site, with elevations ranging from 1,580 to 1,360 feet (Figure 4). The valleys upstream of the Pond A are narrow and deep and the streams are generally entrenched. Downstream of the pond, Big Bugaboo Creek has a wider floodplain and less steep valley side slopes, and Big Bugaboo Creek downstream of UT3 has a broad, alluvial floodplain.

A review of historical aerials from 1950 to 2014 indicates that onsite streams have existed in their approximate location for over 60 years, although the land cover has changed somewhat. Pond A on Big Bugaboo Creek was constructed between 1950 and 1976. A large forested area (approximately 45 acres) on the east side of the property was cleared between 1993 and 2006. During this period, some mature trees were also removed from the riparian zones of Big Bugaboo Creek, UT2, and UT2A. Later aerials reveal that the Site has been maintained in this approximate land cover since 2006. Due to the location and rural nature of the project watersheds along with the consistency in land cover, there is no reason to think land cover change within the watersheds will impact the project.

Reach Name	NC DWR Stream Identification Form Scores	Intermittent/ Perennial Status	Watershed Area (acres)	Watershed Area (sq. mi.)	Land Use ¹
Big Bugaboo Creek	30.25	Perennial	322	0.50	12% Forested, 84% Agriculture, 2% Herbaceous/Grassland, 2% Developed
UT1	28	Intermittent	7	0.01	6% Forested, 94% Agriculture
UT2	29.75	Intermittent (reaches 1 and 2)/Perennial (Reach 3)	65	0.10	94% Agriculture, 6% Developed
UT2A	25.75	Intermittent	17	0.03	82% Agriculture, 18% Developed
UT2B	33	Perennial	7	0.01	100% Agriculture
UT3	35.5	Perennial	96	0.15	4% Forested, 2% Mixed Forest. 85% Agriculture, 6% Herbaceous, 3% Developed
UT4	35	Perennial	21	0.03	16% Forested, 84% Agriculture

1. Land Use Source – National Land Cover Database 2011 (NLCD 2011), Multi-Resolution Land Characteristics (MRLC) consortium, https://www.mrlc.gov/nlcd2011.php

3.2 Geology and Soils

3.2.1 Geology

The Site is located in the Blue Ridge geology belt near the western extent of the piedmont physiographic province in the foothills of the Blue Ridge Mountains. The piedmont province is characterized by rolling, well rounded hills and long low ridges, with elevations ranging from 300 to 1,500 above sea level. The Blue Ridge belt is composed of sedimentary and metamorphic rocks. The underlying geology of the site is mapped as the Alligator Back Formation (NCGS, 1985). This formation is composed of late Proterozoic-Cambrian (500 to 900 million years in age) metasedimentary-metavolcanic rocks occurring on the southwestern flank of the Blue Ridge anticlinorium. The rocks are primarily mica schist and phyllite interlayered with biotite-muscovite gneiss and amphibolite.

3.2.2 Soils

Project area soils are described below in Table 4. Figure 5 provides a soil map of the Site.

Soil Name	Description
CoA – Codorus loam, 0 to 2 percent slopes, frequently flooded	These nearly level, very deep, somewhat poorly drained soils are on flood plains and valleys. They formed in loamy alluvial deposits. They have a loamy surface layer and silt loam subsoil. Permeability is poor and shrink-swell potential is low. Seasonal high water table is a depth of 15 inches. These soils are subject to frequent flooding.
FaD – Fairview sandy loam, 15 to 25 percent slopes	These strongly sloping, very deep, well drained, eroded soils are on high stream terraces. They formed from saprolite residuum. They have a sandy loam surface layer and subsoil. Permeability is high and shrink-swell potential is low. Seasonal high water table is below 6.0 feet.
FcC2 – Fairview sandy clay loam, 8 to 15 percent slopes, moderately eroded	These moderately steep to steep, very deep, well drained soils are on uplands. They formed from saprolite residuum. They have a sandy clay loam surface layer and subsoil. Permeability is high and shrink-swell potential is low. Seasonal high water table is below 6.0 feet.

Table 4: Project Soil Types and Descriptions

Source: Soil Survey of Wilkes County, North Carolina, USDA-NRCS, https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx

3.3 Existing Stream Conditions

Big Bugaboo Creek originates on the Wood property in a small wooded area in the northeast quadrant of the site. It flows southwest into a 2.97-acre pond. UT1 is a short reach that joins Big Bugaboo Creek within the wooded area 900 feet from the upstream end of the receiving stream. UT2 also originates on the property, then flows south/southwest and joins Big Bugaboo Creek just before it flows into the pond. UT2A is a short reach that flows south into UT2 approximately 600 feet downstream of its origin. UT2B is the shortest project reach, originating on the Wood property and flowing south for approximately 200 feet before its confluence with Big Bugaboo Creek. Downstream of the pond, Big Bugaboo Creek flows south for approximately 2,100 feet before it leaves the Wood Property. UT3 originates just north of the Swaim property, flows south onto the property through a 2.16-acre pond, and then joins Big Bugaboo Creek approximately 935 feet downstream of Pond A. UT4 flows into the project boundary from the west and joins Big Bugaboo Creek near the downstream extent of the project site.

In addition to the project streams described above, two non-project jurisdictional features, UT5 and UT6, will be affected by Site construction. UT5 flows into roughly the midpoint of Big Bugaboo Creek Reach 1. It was originally a seep-fed wetland that formed a channel due to erosion and cattle trampling. UT6 flows into UT3 just downstream of Pond B. It appears to have been an ephemeral drainage before it was channelized. UT5 and UT6 currently meet the criteria for jurisdictional streams but clearly formed due to disturbance and manipulation. They will be tied into their respective receiving streams in a stable manner, but no mitigation activity or credit is proposed.

Currently, approximately 150 head of cattle are grazed on the Wood Farm. Most of the stream length on this property is used to water the cattle. The small wooded areas within the pastures along stream corridors (Big Bugaboo Creek at the upstream end and downstream end of the project) are used to provide shade for the cattle. The banks of almost all of the stream length onsite have been destroyed by trampling and fluvial erosion and there are large wallow areas on many of the channels. The aquatic

habitat in the streams has mostly been destroyed and water quality appears to be poor due to sediment and animal waste. Several project streams have active head cuts arrested by tree roots or bedrock features, indicating that vertical incision is occurring. As this incision has occurred, the affected channels have become deeply entrenched. Figure 6 shows the existing stream features on the site. The stream assessment forms and North Carolina Stream Assessment Method (NC SAM) are located in Appendix 1. Surveyed cross sections of existing streams are included in Appendix 2. The existing conditions of each project reach are described in more detail in the following sections.

Big Bugaboo Creek

The headwaters of Big Bugaboo Creek originate within the Wood property limits at a spring head. Sparsely wooded corridors at the far upstream and downstream ends of Big Bugaboo Creek provide shade to cattle, while the remainder of the buffer consists of open pasture. Cattle are grazed throughout the project area and have constant access to most of Big Bugaboo Creek other than the majority of Reach 3, which is fenced but is flash grazed several times per year. The channel substrate is classified as sand and gravel. Some cobble is present, but significantly less common throughout, and some boulders are present on Big Bugaboo Creek Reach 4.

Big Bugaboo Creek Reach 1 has a narrow, well-defined valley, but the valley side slopes are less steep than other portions of the site. The stream has a narrow, sparsely wooded buffer in poor condition and is lined on the right floodplain by a wetland complex. The major stressor is cattle access, which has led to trampled, muddy conditions, including the destruction of aquatic habitat, bed forms, and channel banks. The channel is deeply incised (bank height ratio of 3.3) in areas where banks remain intact and fine sediments choke the bed.

Big Bugaboo Creek Reach 2 begins downstream of the woodline and is contained in a narrow, confined valley. Despite constant cattle access, the majority of the bed and banks are fairly stable, although there is some trampling and bank erosion in isolated locations. Near the downstream end of the reach, there is a crossing where the stream flows through a 30-inch corrugated HDPE pipe, and there is a significant eroded wallow area just downstream of the crossing. This reach flows into the 2.97-acre Pond A.

Big Bugaboo Reach 3 begins at Pond A. Downstream of Pond A, the stream generally has a wider, less confined valley than reaches 1 and 2. As mentioned, cattle have only intermittent access to this reach. The upstream, fenced section of the reach has a bank height ratio of 2.6 while the downstream, unfenced portion is not incised but has been impacted by cattle trampling.

Reach 4 of Big Bugaboo Creek becomes significantly larger at the confluence with UT3 and flows through a broader, alluvial valley. The left floodplain is especially flat and has a small wetland complex which is partially wooded but severely trampled by cattle. The stream is straight (sinuosity = 1.03), and, given its ample floodplain with room to meander, appears to have been channelized. The channel is extensively eroded and incised (2.7 bank height ratio), with both fluvial erosion and cattle trampling present on both banks. Mass wasting is occurring in some locations.

Reach Summary Information – Big Bugaboo Creek						
Parameters	Reach 1	Reach 2	Reach 3	Reach 4		
Length of Reach (Linear Feet)	966	1,070	1,602	465		
Valley confinement (Confined, moderately confined, unconfined)	Confined	Confined	Moderately Confined	Unconfined		
Drainage area (acres)	36	74	196	322		
Perennial, Intermittent, Ephemeral	Perennial	Perennial	Perennial	Perennial		
NCDWR Water Quality Classification	С	С	С	С		
Stream Classification (Existing and Proposed)	F4b/B4	B4/B4	B4/C4b	F4/C4		
Evolutionary Trend		П	11/111	IV		
FEMA zone Classification	Х	Х	Х	Х		
NC SAM Rating	Low	Low	Low	Medium		

Big Bugaboo Creek Reach 2

Bug Headwaters Mitigation Site Final Mitigation Plan

<u>UT1</u>

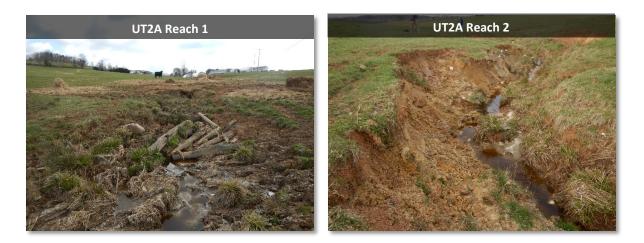
UT1 originates as a wetland seep within the project property limits near the head of Big Bugaboo Creek. The valley is similar to Big Bugaboo Creek Reach 1 in that it is narrow but less steep than other portions of the site. The stream flows through a small wooded area where cattle access the stream for water and shade and have trampled it causing severe degradation of the channel. The bed material is a mix of fine sediments, gravel, and cobble but the bed forms have been destroyed by cattle. There are multiple wallow areas in the adjacent wetland complex as well, and cattle access points to the stream have resulted in a network of groundwater seeps connected with the channel. The channel is incised in the areas were banks are intact, with bank height ratios up to 5.0.

Reach Summary Information – UT1				
Parameters	UT1			
Length of Reach (Linear Feet)	380			
Valley confinement (Confined, moderately confined, unconfined)	Confined			
Drainage area (acres)	7			
Perennial, Intermittent, Ephemeral	Intermittent			
NCDWR Water Quality Classification	С			
Stream Classification (Existing and Proposed)	B4/B4			
Evolutionary Trend				
FEMA zone Classification	Х			
NC Sam Rating	Low			

<u>UT2</u>

UT2 begins at the north end of the Wood property near King Billings Road and is contained entirely within the project property. A utility easement intersects UT2 Reach 2 and continues through UT2A. UT2 is generally entrenched in a tight valley (ER < 2.2) and flows through cattle pasture for its entire length. Cattle trampling is evident throughout but more severe on the downstream portion of the stream. The downstream portion is characterized by incision, bank erosion, and degradation of bed forms. Bed material is mostly a mix of fine sediments and gravel with some small cobble present farther downstream. Multiple patches of exposed bedrock provide grade control for Reach 4.

Reach Summary Information – UT2						
Parameters	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	
Length of Reach (Linear Feet)	506	124	450	314	778	
Valley confinement (Confined, moderately confined, unconfined)	Confined	Confined	Confined	Confined	Moderately Confined	
Drainage area (acres)	15	16	44	45	65	
Perennial, Intermittent, Ephemeral	Intermittent	Intermittent	Perennial	Perennial	Perennial	
NCDWR Water Quality Classification	C	С	С	С	C	
Stream Classification (Existing and Proposed)	B4a/B4a	A4/B4	B4/B4	B4/B4	F4b/C4b	
Evolutionary Trend	II	II	===		111	
FEMA zone Classification	Х	Х	Х	Х	Х	
NC SAM Rating	Medium	Medium	Low	Medium	Low	



UT2A

UT2A originates at the north edge of the Wood property near Austin Traphill Road and continues to the confluence with UT2. There is a large head cut at the upstream end before the stream flows underneath an overhead electric line through a relatively stable wetland complex. Downstream of the wetland complex, UT2A is similar to UT2 Reach 2 in that it is entrenched in a narrow valley, often bordered by small pocket wetlands, and buffered by open, active cattle pasture. It has a bank height ratio of 4.8 and the constant, reachwide cattle access has led to destruction of bed forms and severe erosion of the streambanks. The bed material is a mix of fine sediments and gravel.

Reach Summary Information – UT2A					
Parameters	Reach 1	Reach 2			
Length of Reach (Linear Feet)	211	450			
Valley confinement (Confined, moderately confined, unconfined)	Moderately Confined	Confined			
Drainage area (acres)	13	17			
Perennial, Intermittent, Ephemeral	Intermittent	Intermittent			
NCDWR Water Quality Classification	С	C			
Stream Classification (Existing and Proposed)	B4a/B4a	A4/B4a			
Evolutionary Trend	II	III			
FEMA zone Classification	Х	Х			
NC SAM Rating	Medium	Low			

Bug Headwaters Mitigation Site Final Mitigation Plan

<u>UT2B</u>

UT2B is a short stream that begins on the project property and has a buffer zone consisting of open pasture. It initially flows through a confined, entrenched valley but widens and flattens somewhat as it approaches the confluence with UT2. It is not significantly incised but cattle have access to the entirety of the stream. Although not widespread nor severe, trampling, bank erosion, and degradation of bed forms are all evident, especially on the downstream portion of the stream.

Reach Summary Information – UT2B				
Parameters	UT2B			
Length of Reach (Linear Feet)	168			
Valley confinement (Confined, moderately confined, unconfined)	Confined			
Drainage area (acres)	7			
Perennial, Intermittent, Ephemeral	Perennial			
NCDWR Water Quality Classification	С			
Stream Classification (Existing and Proposed)	B4/B4			
Evolutionary Trend	II			
FEMA zone Classification	Х			
NC SAM Rating	Medium			

<u>UT3</u>

UT3 originates just upstream of the Swaim property near King Billings Road. It flows south onto the Swaim property and through a wooded area where the stream is stable and in good condition. After entering the project area, UT3 flows into an existing farm pond (Pond B) with a dam that is in poor condition. The original pond outlet structure has been destroyed and the earthen dam is now partially breached. All outflow now exits the pond through the breach and has created a head cut from UT3 to the dam. The dam is covered with trees, is seeping, and is in imminent danger of failing. Immediately downstream of the dam, the UT3 channel has been abandoned due to the breach and head cut. The outflow eventually flows back into the UT3 channel approximately 200 feet downstream of the dam. The stream then flows through a short section of forest and into open pasture, where it is incised (2.1 bank height ratio) and the banks have been heavily trampled by cattle. The stream appears to have been channelized through the cattle pasture; it is somewhat over-widened and has a sinuosity of approximately 1.0 despite the valley being only moderately confined.

Reach Summary Information – UT3				
Parameters	UT23			
Length of Reach (Linear Feet)	1,281			
Valley confinement (Confined, moderately confined, unconfined)	Moderately Confined			
Drainage area (acres)	96			
Perennial, Intermittent, Ephemeral	Perennial			
NCDWR Water Quality Classification	С			
Stream Classification (Existing and Proposed)	G4/C4			
Evolutionary Trend	=			
FEMA zone Classification	Х			
NC SAM Rating	Low			

<u>UT4</u>

UT4 originates off the project property to the west and is impounded by a farm pond approximately 200 feet upstream of the project property. It flows through a fairly tight valley that becomes less confined as it reaches the floodplain of Big Bugaboo Creek Reach 4. Cattle have access to the entire length of UT4 within the project property. There are a few scattered trees within the UT4 buffer zone, which cattle use as shade, and some adjacent herbaceous vegetation, which is grazed. UT4 is generally vertically and laterally stable, although the upstream portion appears to be somewhat incised.

Reach Summary Information – UT4				
Parameters	UT24			
Length of Reach (Linear Feet)	128			
Valley confinement (Confined, moderately confined, unconfined)	Moderately Confined			
Drainage area (acres)	21			
Perennial, Intermittent, Ephemeral	Perennial			
NCDWR Water Quality Classification	С			
Stream Classification (Existing and Proposed)	B4/B4			
Evolutionary Trend	11			
FEMA zone Classification	Х			
NC SAM Rating	High			

3.4 Existing Wetlands

On November 19-21, 2018, Wildlands investigated the extent of Waters of the United States within the project area. All jurisdictional resources were located by sub-meter accurate GPS or conventional survey. The U.S. Army Corps of Engineers (USACE) issued the Preliminary Jurisdictional Determination on June 21, 2020. The supporting forms are included in Appendix 3. The Preliminary JD is also included in Appendix 3.

There are 17 jurisdictional wetland features located within the project area (Figure 6). Jurisdictional wetland features exhibited evidence of prolonged saturation within the upper 12 inches of the soil profile, a low chroma soil matrix, and wetland plant communities. Each wetland was evaluated using the North Carolina Wetland Assessment Method (NCWAM). All wetlands are the headwater forest type except for Wetland O which classifies as the bottomland hardwood forest type. Wetlands generally scored low for the hydrology, water quality, and habitat functions and low for the overall wetland ratings. Wetland O was an exception which scored medium for hydrology and water quality functions, low for the habitat function, and medium for the overall rating. Poor wetland quality at the site is due

streams infrequently accessing floodplains, livestock trampling and waste inputs, lack of appropriate riparian vegetation structure and species, and limited water storage capability. NCWAM forms are provided in Appendix 3. Wetlands B, E, F, G, I, P, and Q appear to have formed as a result of stream incision, overwidening, and bank trampling as they occur between the current ordinary high water mark and historic floodplain elevation. Wetland N and portions of Wetland C are hydrologically supported by backwater from the Swaim Pond (Pond B) and the Wood Pond (Pond A). Wetlands L and M are shallow ditch features that previously served to convey discharge from the Swaim Pond (Figure 6).

3.5 Existing Vegetation

The site is a maintained cattle pasture with mature trees mainly growing along Big Bugaboo Creek. Herbaceous vegetation that can be found throughout the site are tall fescue (*Schedonorus arundinaceus*), cut-grass (*Leersia oryzoides*), juncus (*Juncus effuses*), and white clover (*Trifolium repens*). The riparian vegetation is shown in Table 5 below by stream.

Scientific Name	Common Name	Big Bugaboo Creek	UT1	UT2	UT2A	UT2B	UT3	UT4
Acer rubrum	Red Maple	х	Х				Х	
Ailanthus altissima	Tree of Heaven*	х						
Betula nigra	River Birch			Х				
Fraxinus pennsylvanica	Green Ash	х						
Glechoma hederacea	Creeping Charlie*	х						
llex opaca	American Holly	х	Х	Х				
Ligustrum sinense	Chinese Privet*	х					Х	Х
Liriodendron tulipifera	Tulip Poplar	х					Х	
Melia azedorach	Chinaberry*						Х	
Oxydebdrum arboreum	Sourwood	х						
Platanus occidentalis	American Sycamore	х					Х	
Quercus rubra	Red Oak	х					Х	Х
Rosa multiflora	Multiflora Rose*	х		Х	Х			
Rubus allegheniensis	Blackberry	х						
Smilax rotundifolia	Green Brier	Х		Х	Х			

Table 5: Existing Riparian Vegetation

*Invasive Species

3.6 Utilities, Site Access, and Site Constraints

A power utility right-of-way crosses UT2 just upstream of the confluence with UT2A and continues east to also cross UT2A near its headwaters. Utility crossings will be fenced with gates on both sides and there will be no crossing features for the stream channel. There will also be three internal easement breaks for culvert crossings (Table 6). Maintenance of crossings will be the responsibility of the landowner once the project is closed by the regulatory agencies (IRT) and transferred to NCDEQ stewardship. These are on Big Bugaboo Creek Reach 2 and UT2 Reach 5 just upstream of their confluence as well as Big Bugaboo Creek Reach 3 just upstream of the confluence with UT3. All three culvert crossings will be fenced and gated. The Site can be accessed via a driveway leading to the Wood property from King Billings Road.

No.	Width (ft)	Location	Internal or External	Crossing Type	Existing/New/ Replacement
1	40	UT2 Reach 2	Internal	Utility	Existing
2	40	UT2A	Internal	Utility	Existing
3	50	UT2 Reach 5	Internal	Culvert	New
4	50	Big Bugaboo Creek Reach 2	Internal	Culvert	Replacement
5	50	Big Bugaboo Creek Reach 3	Internal	Culvert	Replacement

Table 6: Easement Breaks and Crossings

3.7 Potential for Functional Uplift and Project Justification

The main stressors on the site are cattle access to streams, removal or narrowing of riparian buffers, runoff from agricultural fields, installation of farm ponds, and some historical channelization of streams. These stressors have led to degraded aquatic habitat and bed forms, erosion of stream banks, head cutting, and disconnection of streams from floodplains. Water quality problems created by these stressors include sedimentation, bacteria entering the system from livestock waste, channel erosion and pasture runoff, increases in water temperatures, and decreased dissolved oxygen. These ecological problems are very similar to those described in the watershed planning documents discussed in Section 2 above. These problems will be reduced or eliminated through the following:

- Restoring degraded stream channels to reduce erosion and reconnect streams to floodplains.
- Eliminating bank erosion and associated pollutants.
- Providing grade control in streams to eliminate head cutting.
- Planting riparian buffers to shade streams, help stabilize streams, and filter runoff and overbank flows.
- Removing farm ponds to restore hydrology, lotic habitats, and fish passage
- Installing stormwater BMPs to treat runoff from adjacent pastures.
- Fencing out livestock.
- Protecting the site with a conservation easement.

These project components are described in Section 4 in terms of goals, objectives, and outcomes for the project and in greater detail in Section 6, where the project site mitigation plan is outlined. Another potential benefit to the project is wetland enhancement and potential bog turtle habitat that may develop as a result of raising of the stream beds.

The project offers an excellent opportunity for ecological uplift with low risk of failure (Section 3.8 below). Project risks and uncertainties are described in the next section. The risks most likely to cause real problems are all manageable. Therefore, the uplift potential given the site constraints is very high. There is little concern that if the site is properly constructed and maintained that the project goals will not be met.

3.8 Project Risk and Uncertainties

The level of overall risk on this project is low. Due to the rural nature of the surrounding area, it is unlikely that large tracts of land will be developed in the project watersheds. All of the project streams except for UT3 and UT4 originate on the project property and the project watersheds are also mostly within the property. There is very little timbering or development that could occur that would affect the project. Foreseeable problems that may arise on the site include easement encroachments, large floods, beaver activity, spreading of invasive species, and sedimentation due to agricultural practices on

adjacent lands. The main area of concern for easement encroachments is on the Swaim property adjacent to UT3 because this is the only area where there will be no fencing adjacent to an area that is routinely mowed or planted with crops. Wildlands will install closely spaced (approximately every 50 feet) easement signs along the boundary in this location and work with the landowner to make sure they do not mow within the easement. If necessary, Wildlands will install horse tape between the signs to show the easement boundary. Large floods will eventually occur on the site, but the grade control structures and bank revetments are designed to handle large flows. There is a dam approximately 200 feet upstream of UT4 on an adjacent property. The dam currently appears to be in good condition but there is a possibility of failure at some point in the future. While there have been no indications of beaver activity on the site that Wildlands is aware of, there is potential for beaver dams after construction. Wildlands will contract with USDA Animal and Plant Health Inspection Service (APHIS) to remove beaver from the site and dismantle the dams. There are invasive species on the site as noted in Table 5. Wildlands will do pre-construction treatment of these species and will provide ongoing treatments as needed throughout the monitoring period. Adjacent crop fields are located to the west and north of some project reaches creating some potential for sedimentation in project streams due to runoff from these fields. While this is not expected to be a significant problem, wildlands will monitor this situation and take steps to remedy any problems with sedimentation that occur.

4.0 Goals and Objectives

The overall goal for stream restoration elements of the project is to restore natural/historical functions to degraded stream channels. The overall goal of enhancement reaches is to enhance specific aquatic resource functions. The specific goals and objectives for this mitigation site have been carefully developed so that the project results in 1) alleviation of the specific watershed stressors discussed in Section 2 above and 2) provides maximum ecological uplift to project streams and riparian zones. The goals and objective for this project are described in Table 7 below.

Goal	Objectives	Expected Outcomes
Improve the stability of stream channels	Construct stream channels that will maintain a stable pattern and profile considering hydrologic and sediment inputs to the system; install bank revetments and grade control; install bank vegetation.	Reduce erosion and sediment inputs; maintain appropriate bed forms and sediment size distribution; support water quality and habitat goals.
Reconnect channels with floodplains and riparian wetlands	Reconstruct stream channels with appropriate bankfull dimensions and depth relative to the existing floodplain.	Reduce shear stress on channel; hydrate adjacent wetland areas and vernal pools; filter pollutants out of overbank flows; provide surface storage of water on floodplain; increase groundwater recharge while reducing outflow of stormwater; support water quality and habitat goals.

Table 7: Mitigation Goals and Objectives

Goal	Objectives	Expected Outcomes
Improve instream habitat	Install habitat features such as cover logs, log sills, and brush toes into restored/enhanced streams. Add woody materials to channel beds. Construct a variety of riffle features and pools of varying depth. Fence out livestock.	Support biological communities and processes. Provide aquatic habitats for diverse populations of aquatic organisms.
Improve water quality	Stabilize stream banks. Plant riparian buffers with native trees. Construct BMPs to treat pasture runoff. Fence out livestock.	Reduce sediment and nutrient inputs from stream banks; reduce sediment, nutrient, and bacteria inputs from pasture runoff; keep livestock out of streams, further reducing pollutants in project streams.
Restore/improve riparian buffers	Plant native tree species in riparian zones where currently insufficient.	Provide a canopy to shade streams and reduce thermal loadings; stabilize stream banks and floodplain; support water quality and habitat goals.
Permanently protect the project site from harmful uses	Establish conservation easements on the Site	Ensure that development and agricultural uses that would damage the site or reduce the benefits of the project are prevented.

5.0 Regulatory Considerations

Table 8, below, is a summary of regulatory considerations for the Site. A Categorical Exclusion (included Appendix 4 along with agency correspondence) for the Bug Headwaters Mitigation Site was submitted to DMS on November 5, 2018 and approved on November 7, 2018.

Regulatory Considerations					
Parameters	Applicable?	Resolved?	Supporting Docs?		
Water of the United States - Section 404	Yes	Yes	PCN ¹		
Water of the United States - Section 401	Yes	Yes	PCN		
Endangered Species Act	Yes	Yes	Appendix 4		
Historic Preservation Act	Yes	Yes	Appendix 4		
Coastal Zone Management Act	No	N/A	N/A		
FEMA Floodplain Compliance	No	N/A	N/A		
Essential Fisheries Habitat	No	N/A	N/A		

Table 8: Project Attribute Table Part 4

1. PCN to be provided to DMS with Final Mitigation Plan

5.1 401/404

Many of the Site wetlands are within the floodplain adjacent to the existing streams and will be partially impacted during realignment of the stream channel. Two open water features (Pond A and Pond B) and Wetlands C and N formed behind man-made dams. The design includes removal of the man-made dams and restores the valley and stream channel through the area that is currently backwatered. A portion of Wetlands C and N and the entirety of both open water features will be permanently impacted by the dam removal. These features are currently at risk of loss if the dams fail.

The impacts to wetland and open water features are summarized below in Table 9. Detailed, itemized impacts are provided in the PCN.

Jurisdictional Feature	Classification	Acreage	Permanent or Temporary	Type of Activity	Impact Area (acres)
Pond A	Open Water	2.973	Permanent	Dam removal, stream realignment	2.973
Pond B	Open Water	2.158	Permanent	Dam removal, stream realignment	2.158
Wetlands A-Q	Headwater Forest, Bottomland Hardwood Forest	6.612	Permanent	Channel Relocation, Pond Removal	1.238
Wetlands A-Q	Headwater Forest, Bottomland Hardwood Forest	6.612	Temporary	Floodplain Grading, Haul Road, Bank Grading	1.050

Table 9: Estimated Impacts to Project Wetlands

5.2 FEMA Floodplain Compliance and Hydrologic Trespass

The site is represented on the Wilkes County Flood Insurance Rate Map (FIRM) Panels 4902 and 4904, both with an effective date of March 2, 2009. None of the project streams are mapped as Special Flood Hazard Areas (SFHA); all streams within the project limits are located in Zone X. Wildlands will coordinate with the Wilkes County floodplain administrator to obtain the appropriate floodplain development permit for the project, if required.

There is no concern for hydrologic trespass on adjacent properties as a result of this project. All of the project streams except for UT3 originate on the project parcels. The stream work on UT3 will be constructed far downstream of the property line and there is approximately 15 feet of drop between the property line and the work area. Due to the slopes of the streams and valleys, there is no possibility of creating wetlands on upstream properties.

6.0 Project Site Mitigation Plan

6.1 Design Overview

The design for this mitigation site (Figure 7) was developed to maximize the potential uplift described in Section 3.7 above. The approaches for each reach were initially devised by Wildlands but some approaches were modified as a result of IRT input during the post-contract site walk conducted on September 26, 2018. Meeting notes from that site walk are included in Appendix 5. Three approaches will be used for the project reaches including stream enhancement I, stream enhancement II, and stream restoration. The least amount of manipulation will be performed on the enhancement II reaches. Enhancement II activities will primarily consist of fencing out livestock, planting riparian buffer zones, and repairing localized bank erosion/instability. Enhancement I activities will include fencing out livestock, planting riparian buffer zones, adding structure to the bed, localized reshaping of channel dimensions, and cutting a floodplain bench to allow flows higher than the design bankfull discharge to access the floodplain. Restoration will involve the most extensive manipulation and activities will include rebuilding the channel with the appropriate dimensions, plan view pattern, and profile to transport the water and sediment loads. Bed features including riffles, pools, cascades, and step-pool sequences will be constructed. The cascades and step-pool sequences are necessary due to the high slopes of many of the design reaches. Grade control structures such as log sills will be added to the beds to protect against future degradation and revetments such as brush toe and log vanes will be used to protect restored stream banks. Restored reaches will be reconnected with their floodplains and existing wetlands will be recharged by the raising of channel beds. Livestock will be fenced out and riparian buffer zones will be planted. The entire project area will be protected by a conservation easement. Specific mitigation activities are listed below by reach in Table 10.

Project Reach	Primary Stressors/Impairments	Approach	Mitigation Activities
Big Bugaboo Creek Reach 1	Erosion and cattle trampling, incision, lateral instability, poor buffer quality/lack of buffer	R	Restoring dimension, pattern, and profile; replanting buffers; fencing out cattle; protecting with conservation easement; pocket wetland at upstream end
Big Bugaboo Creek Reach 2	Cattle access, some erosion and trampling, lack of buffer, significant wallow area	EI	Restoring dimension and profile, replanting buffers, fencing out cattle, protecting with conservation easement
Big Bugaboo Creek Reach 3	Cattle access, erosion and trampling, incision, channelization, in-line farm pond lack of buffer	R	Restoring dimension, pattern, and profile; replanting buffers; fencing out cattle; protecting with conservation easement
Big Bugaboo Creek Reach 4	Cattle access, erosion and trampling, some incision, channelization, lateral instability, poor quality buffer	EI	Fencing out cattle, creating floodplain bench, replanting buffers, protecting with conservation easement

Project Reach	Primary Stressors/Impairments	Approach	Mitigation Activities
UT1	Severe erosion and cattle trampling, incision, poor quality buffer/lack of buffer	R	Restoring dimension, pattern, and profile; replanting buffers; fencing out cattle; protecting with conservation easement, pocket wetland at upstream end
UT2 Reach1	Cattle access, isolated erosion and trampling, lack of buffer	EII	Fencing out cattle, bank repairs where needed, replanting buffers, protecting with conservation easement, ephemeral step-pool stabilization at upstream end
UT2 Reach 2	Cattle access, isolated erosion and trampling, some incision, lack of buffer	EI	Restoring dimension and profile, fencing out cattle, replanting buffers, protecting with conservation easement
UT2 Reach 3	Erosion and cattle trampling, incision, lack of buffer	R	Restoring dimension, pattern, and profile; replanting buffers; fencing out cattle; protecting with conservation easement
UT2 Reach 4	Isolated erosion and cattle trampling, some lateral instability, lack of buffer	EI	Bank grading to reshape channel, bank repairs where needed, fencing out cattle, replanting buffers, protecting with conservation easement
UT2 Reach 5	Erosion and cattle trampling, incision, lack of buffer	R	Restoring dimension, pattern, and profile; replanting buffers; fencing out cattle; protecting with conservation easement
UT2A Reach 1	Cattle Access, active head cutting at headwaters, lack of buffer	EII	Fencing out cattle, replanting buffers, protecting with conservation easement, ephemeral step- pool stabilization at upstream end
UT2A Reach 2	Severe erosion and cattle trampling, incision, lack of buffer	R	Restoring dimension, pattern, and profile; replanting buffers; fencing out cattle; protecting with conservation easement
UT2B	Cattle Access, some erosion and trampling, lack of buffer	EII	Fencing out cattle, bank repairs where needed, replanting buffers, protecting with conservation easement
UT3	Erosion and cattle trampling, some incision, channelization, lateral instability, active head cutting of farm pond dam, lack of buffer	R	Restoring dimension, pattern, and profile; replanting buffers; fencing out cattle; protecting with conservation easement
UT4	Cattle access, some incision, sparse, narrow buffer	EII	Fencing out cattle, replanting buffers, protecting with conservation easement

6.2 Reference Streams

Reference reaches were selected from Wildlands' reference database and other sources to develop the range of design parameters for each of the design streams. References were selected for specific design reaches based on design stream type and similarities in drainage area, slope, and physical characteristics. Design reaches were separated into three groups based on the similarities between these characteristics and a distinct set of reference reaches was selected to describe each group. Reference reach information is provided in Table 11. More detailed reference reach geomorphic data are included in Appendix 6. Six additional reference reaches were used along with those in Table 11 to create the reference reach regional curve for the discharge analysis discussed in Section 6.3. Locations of reference reaches are shown on Figure 8.

Design Stream	Group 1 (Big Bugaboo Creek R1, UT1, UT2 R2, UT2A R2)			(Big Bugab	oup 2 000 Creek R2, -R5, UT3)	Group 3 (Big Bugaboo Creek R3-R4)			
Reference Reach	Shrew Trib A	Timber Trib R1	UT to Kelly Branch	Magnolia Trib R1	LKN Group Camp Trib – US	UT to Varnals Creek	UT to Catawba River	UT to Lyle Creek	
County	Wilkes	Wilkes	McDowell	Wilkes	Iredell	Alamance	Catawba	Catawba	
Reference Type	Pattern, Profile, Discharge	Pattern, Profile, Discharge	Pattern, Profile, Discharge	Pattern, Profile	Pattern, Profile, Discharge	Pattern, Profile Discharge	Pattern, Profile	Pattern, Profile, Discharge	
Region	Piedmont	Piedmont	Inner Piedmont Belt	Piedmont	Piedmont	Piedmont	Piedmont	Piedmont	
Basin	Yadkin	Yadkin	Broad River	Yadkin	Catawba	Cape Fear	Catawba	Catawba	
Drainage Area (sq. mi.)	0.02	0.04	0.08	0.31	0.10	0.41	1.60	0.25	
Stream Type	A5	B4	B4/B4a	B4c	E5b	C4/E4	E3b/C3b	C5	
Bkf Q (cfs)	3.5	17	23	64	12	54	80	18	
Sinuosity	1.2	1.1	1.2	1.26	1.6	1.2	1.1	1.1	
Valley Slope (ft/ft)	0.05	0.04	0.049	0.017	0.023	0.02	0.029	0.009	
Channel Slope (ft/ft)	0.03 – 0.065	0.03	0.03 – 0.065	0.016	0.017	0.017	0.027	0.004	
D50 (mm)	2	6.5	-	28	5.2	15	75.9	0.2	

Table 11: Reference Reach Summary

6.3 Design Discharge Analysis

Multiple methods were used to estimate bankfull discharges for restoration reaches including regional curve data (Harman et al. 2003 and Walker, unpublished), a regional flood frequency analysis using U.S. Geological Survey (USGS) gage sties, and reference reach data. The methods were compared, and a design discharge was selected based on the results of the different methods. Slightly larger design discharges relative to drainage areas were established for the upper reaches of Big Bugaboo Creek and small tributaries to drive designs of slightly larger channels for these reaches. This design consideration helps prevent channels from clogging with vegetation and then accumulating sediment after construction. Results of each method and the final design discharges are shown in Tables 12 and 13 and illustrated in Figure 9.

Discharge Estimate Method	Big Bugaboo Creek Reach 1 (35.5 ac)	Big Bugaboo Creek Reach 2 (73.9 ac)	Big Bugaboo Creek Reach 3 (196.0 ac)	Big Bugaboo Creek Reach 4 (321.6 ac)
NCSU Rural Piedmont Regional Curve (cfs)	11	19	38	54
NRCS Piedmont/Mountain Regional Curve	5.7	10	22	32

Table 12: Summary of Design Bankfull Discharge Analysis for Big Bugaboo Creek

Regional Flood Frequency	1.2-year event	9.2	16	32	47
Analysis (cfs)	1.5-year event	14	23	47	67
Reference Reach Region	13	21	38	52	
Final Design Q	12.4	20.4	34.0	48.3	

Table 13: Summary of Design Bankfull Discharge Analysis for Tributaries

Discharge Estimate Method			UT2 Reach 2 (16.2 ac)	UT2 Reach 3 (43.7 ac)	UT2 Reach 5 (65.3 ac)	UT2A Reach 2 (16.5 ac)	UT3 (96.5 ac)
NCSU Rural Piedmont Regiona	3.3	6.3	13	17	6.3	23	
NRCS Piedmont/Mountain Re	1.5	3.1	6.9	9.3	3.1	13	
Regional Flood Frequency	1.2-year event	2.7	5.2	11	14	5.2	19
Analysis (cfs)	1.5-year event	4.0	7.8	16	21	7.9	28
Reference Reach Regiona	4.6	8.1	15	19	8.2	25	
Final Design Q	3.9	7.2	14.6	18.8	7.3	24.6	

6.4 Design Channel Morphological Parameters

Reference reach data and designer experience were used to develop design morphologic parameters for each of the enhancement I and restoration reaches. Key morphological parameters are summarized in Tables 14-16. Complete design morphological parameters are included in Appendix 6.

	Ex	isting Par	ameters		Refer	ence Para	meters	Proposed Parameters				
Parameter	Big Bugaboo Creek R1	UT1	UT2 R2	UT2A R2	Shrew Trib A	Timber Trib R1	UT to Kelly Branch	Big Bugaboo Creek R1	UT1	UT2 R2	UT2A R2	
Valley Width (ft)	30-60	70-120	20-35	20-40	-	-	-	30-60	70-120	20-35	20-40	
Contributing Drainage Area (acres)	35.5	6.6	16.2	16.5	12.8	25.6	51.2	35.5	6.6	16.2	16.5	
Channel/Reach Classification	F4b	B4	A4	A4	A5	B4	B4/B4a	B4	B4	B4	B4a	
Design Discharge Width (ft)	11.3	11.6	4.7	4.6	3.6	8.9	7.9	6.5	4.2	5.3	5.1	
Design Discharge Depth (ft)	0.3	0.2	0.5	0.4	0.5	0.7	1.1	0.5	0.3	0.4	0.4	
Design Discharge Area (ft ²)	3.5	2.7	2.3	1.9	1.1	4.6	5.7	3.3	1.4	2.1	2.0	
Design Discharge Velocity (ft/s)	3.1	2.6	3.8	4.4	3.3	3.7	5.9	3.8	2.9	3.4	3.7	
Design Discharge (cfs)	10.9	6.9	8.5	8.3	3.5	17.0	23.0	12.4	3.9	7.2	7.3	
Channel Slope (ft/ft)	0.033	0.035	0.052	0.049	0.063	0.033	0.065	0.034	0.036	0.039	0.045	
Sinuosity	1.04	1.01	1.14	1.04	1.1	1.1	1.2	1.02	1.0	1.05	1.03	
Width/Depth Ratio	36.3	50.7	9.7	11.3	12.1	17.0	10.9	13.0	13.0	13.0	13.0	
Bank Height Ratio	3.3	5.0	1.4	4.8	1.0	1.0	2.5	1.0	1.0	1.0	1.0	
Entrenchment Ratio	1.2	1.7	1.8	2.5	2.1	1.5	1.2	>1.4	>1.4	>1.4	>1.4	
d50 (mm)	37	36	29	18	2.0	6.5	-	-	-	-	-	

Table 14: Summary of Design Morphologic Parameters for Reference Group 1

		Existing	g Parame	ters		Refer Param		Proposed Parameters					
Parameter	Big Bugaboo Creek R2	UT2 R3	UT2 R4	UT2 R5	UT3	Magnolia Trib 1	LKN Group Camp	Big Bugaboo Creek R2	UT2 R3	UT2 R4	UT2 R5	UT3	
Valley Width (ft)	30-80	35-55	40- 125	40- 140	60- 110	-	-	30-80	35-55	40- 125	40- 140	60- 110	
Contributing Drainage Area (acres)	73.9	47.3	45.2	65.3	96.5	194.4	65.7	73.9	47.3	45.2	65.3	96.5	
Channel/Reach Classification	B4	B4	B4	F4b	G4	B4c	E5	B4	B4	B4	C4b	C4	
Design Discharge Width (ft)	4.2	9.3	9.3	9.3	6.6	15.6	4.2-4.4	9	7.1	7.1	8.8	9.5	
Design Discharge Depth (ft)	0.8	0.4	0.4	0.4	0.8	1.0	0.8	0.7	0.5	0.5	0.6	0.7	
Design Discharge Area (ft²)	3.4	4.0	4.0	4.0	5.3	16	3.4-3.6	6.0	3.8	3.8	5.5	6.8	
Design Discharge Velocity (ft/s)	4.2	3.4	3.4	3.4	4.1	4.0	3.5	3.6	3.9	3.9	3.4	3.7	
Design Discharge (cfs)	14.1	13.8	13.8	13.8	21.7	64	12.2	20.4	14.6	14.6	18.8	24.6	
Channel Slope (ft/ft)	0.023	0.027	0.037	0.020	0.020	0.016	0.017	0.021	0.027	0.027	0.017	0.016	
Sinuosity	1.07	1.05	1.07	1.01	1.04	1.26	1.6	1.02	1.04	1.04	1.06	1.21	
Width/Depth Ratio	5.3	21.4	21.4	21.4	8.3	15.2	5.2-5.5	13.5	13.0	13.0	13.0	13.0	
Bank Height Ratio	1.6	3.6	3.6	3.6	2.1	1.6	0.9-1.1	1.0	1.0	1.0	1.0	1.0	
Entrenchment Ratio	3.9	1.3	1.3	1.3	1.4	1.9	2.0-2.5	>1.4	>1.4	>.14	>2.2	>2.2	
d50 (mm)	17	20	20	20	28	28	5.2	-	-	-	-	-	

Table 15: Summary of Design Morphologic Parameters for Reference Group 2

	Existing Pa	arameters	Refere	ence Param	Proposed Parameters		
Parameter	Big Bugaboo Creek R3	Big Bugaboo Creek R4	UT to Varnals Creek	UT to Catawba River R2	UT to Lyle Creek	Big Bugaboo Creek R3	Big Bugaboo Creek R4
Valley Width (ft)	100-180	100-220	-	-	-	100-180	100-220
Contributing Drainage Area (acres)	196.0	321.6	262.4	1024.0	160.0	196.0	321.6
Channel/Reach Classification	B4	F4	C4/E4	E3b/C3b	C5	C4b	C4b
Design Discharge Width (ft)	6.0	18.6	9.3-10.5	12.3	7.0	10.4	11.8
Design Discharge Depth (ft)	1.1	0.8	1.1-1.2	1.1	0.47	0.8	0.9
Design Discharge Area (ft ²)	6.6	14.1	10.3-12.3	13.2	3.5-4.1	8.2	10.3
Design Discharge Velocity (ft/s)	5.3	3.9	4.4-5.2	6.1	4.7	4.2	4.7
Design Discharge (cfs)	34.9	54.5	54	80	18	34.0	48.3
Channel Slope (ft/ft)	0.023	0.016	0.017	0.027	0.004	0.018	0.020
Sinuosity	1.01	1.03	1.2	1.1	1.1	1.16	1.02
Width/Depth Ratio	5.4	24.6	8.1-9.3	11.5	14.9	13.0	14.0
Bank Height Ratio	2.6	2.7	1.0-1.0	0.8-1.3	0.6-0.9	1.0	1.0
Entrenchment Ratio	1.5	1.2	5.7-10.0	4.3	5.7-6.4	>2.2	>2.2
d50 (mm)	25	49	15	75.9	0.2	-	-

Table 16: Summary of Design Morphologic Parameters for Reference Group 3

6.5 Sediment Transport Analysis

A qualitative assessment of sediment supply and sources in the project watershed was performed based on visual inspection and review of historic aerial photos. The watershed assessment indicates that the watershed is stable and there is no reason to believe that land use will change significantly in the foreseeable future. Due to the rural nature of the watershed, the stable land use, and the lack of sediment accumulation in the project streams, the sediment load to the project streams is expected to be low and stable. BMPs at the upstream ends of UT2 and UT2A will stabilize eroding areas that contribute sediment to those streams and pocket wetland features above UT1 and Big Bugaboo Creek will capture sediment that would go into those streams. As a result, design channels are expected to remain stable and pass the sediment delivered from the watershed.

A competence analysis was performed to analyze the ability of the proposed streams to transport the sizes of sediment supplied to them. The results of the competence analysis are shown in Tables 17 and 18. The competence analysis on these reaches indicates that the reaches will be able to transport the sediment supplied to them by the watersheds.

Table 17: Results of Competence Analysis

Parameter	Big Bugaboo Creek Reach 1	Big Bugaboo Creek Reach 2	Big Bugaboo Creek Reach 3	Big Bugaboo Creek Reach 4
Abkf (sq ft)	3.3	6.0	8.2	10.3
Wbkf (ft)	6.5	9.0	10.4	11.8
Dbkf (ft)	0.5	0.7	0.8	0.9
Schan (ft/ft)	0.034	0.021	0.018	0.020
Bankfull Velocity (fps)	3.8	3.6	4.2	4.7
Bankfull Shear Stress, t (lb/sq ft)	1.02	0.85	0.86	1.07
Movable particle size (mm)	80	66	66	84
Largest particle from bar sample (mm)	30		30	

Table 18: Results of Competence Analysis

Parameter	UT1	UT2 Reach 3	UT2 Reach 5	UT2A Reach 2	UT3
Abkf (sq ft)	1.4	3.8	5.5	2.0	6.8
Wbkf (ft)	4.2	7.1	8.8	5.1	9.5
Dbkf (ft)	0.3	0.5	0.6	0.4	0.7
Schan (ft/ft)	0.036	0.027	0.017	0.045	0.016
Bankfull Velocity (fps)	2.9	3.9	3.4	13.7	3.7
Bankfull Shear Stress, t (lb/sq ft)	0.69	0.87	0.63	1.07	0.70
Movable particle size (mm)	53	67	48	84	54
Largest particle from bar sample (mm)			50		

6.6 Design Summary

Below are descriptions of the designs for each of the reaches. The entire site will include include fencing out cattle, planting riparian buffers with native tree species, and permanent protection by a conservation easement.

Big Bugaboo Creek Reach 1 - Restoration

Reach 1 of Big Bugaboo Creek begins directly below an existing headcut that has been formed by shallow concentrated flow over cattle pasture. The reach flows from the east-northeast until it reaches the confluence with UT1. The reach is proposed as restoration and a new channel will be rebuilt mostly offline within the existing valley as a Rosgen B4 type stream with a Priority 1 approach. As is common with natural B-type channels, the sinuosity of the restored channel will be very low. The alignment will be designed to limit impacts to existing riparian wetlands and, due to the steepness of the reach, many wood and stone drop structures will be used. An eroding headcut exists upstream of the jurisdictional channel. A pocket wetland BMP will be installed above the headcut to treat runoff from surrounding pastures. A rock-lined swale will convey flow out of the BMP to Reach 1 and stabilize the existing headcut.

Big Bugaboo Creek Reach 2 – Enhancement I

Big Bugaboo Creek Reach 2 begins at the confluence with UT1 and flows from the northeast until the confluence with UT2. Some sections of the channel require only minor repairs, planting, and livestock exclusion in order to restore functionality. Other sections of the reach will be rebuilt as a B4 stream type with low sinuosity and confined to the extents of the incised existing channel. This reach is proposed as enhancement 1 due to the combination of restoration and enhancement II approaches. As with Reach 1,

wood and stone drop structures will be used extensively throughout. The existing culvert crossing on this reach will be replaced with a new crossing utilizing a much larger culvert. The larger culvert will better accommodate fish passage and high stream flows.

Big Bugaboo Creek Reach 3 - Restoration

Big Bugaboo Creek Reach 3 begins at the confluence with UT2, just upstream of an in-line farm pond (Pond A) and at the downstream end of a wetland complex. It travels through a relatively unconfined valley with slopes ranging from 1.4 to 2.7 percent and was designed as a C4b type stream. Due to the relatively high slopes for a C type stream, drop structures and bank revetments will be utilized for grade control and bank protection. The Pond A dam will be removed. The upstream portion of Big Bugaboo Creek Reach 3 will be constructed along the old pond bottom, mostly on existing grade other than at the very upstream downstream ends of the pond. In these locations, sediment wedges will be removed in order to return the channel to its original, pre-impounded grade. These sediment accumulations will be removed and spread on adjacent fields. Along the channel corridor through the pond, existing substrate will be removed and replaced with compacted fill material from the dam or other borrow areas. This will create more stable bed material in which to cut the channel while leaving the adjacent floodplains comprised of material from the pond bed. This will likely result in wetland features adjacent to the channel. The dam will be completely removed to the original valley side slopes. Downstream of the dam, the channel appears to have been channelized and realigned to the valley's edge while a wetland complex occupies much of the center of the valley. In this area, the proposed pattern avoids existing trees and mostly follows a slight ridge that travels the length of the valley. Bankfull elevations were set at or above minimum wetland grades and floodplain grading will tie into existing grades in a manner that minimizes impacts to the existing wetlands. There is a proposed internal culvert crossing approximately 350 feet upstream of the confluence with UT3.

Big Bugaboo Creek Reach 4 – Enhancement 1

Big Bugaboo Creek Reach 4 begins at the confluence of Big Bugaboo Creek and UT3 and extends to the southern boundary of the property. The reach was designed as a C4 type channel with narrow belt width as it is confined primarily to the extents of the over-widened existing channel due to a large wetland (wetland O) on the left floodplain and steep hill slopes on the right floodplain. Reach 4 will transition from a priority 1 restoration upstream of the wetland to an on-line priority 2 approach through the first half of the reach. After transitioning to the existing bed grade, the channel will follow the existing channel alignment for the remainder of the reach. A bankfull bench will be constructed on either side of the on-line channel segment within the incised existing channel to reduce shear stress during storm events. The adjacent wetland (Wetland O, Figure 6) on the left floodplain will be protected by the conservation easement. Rock stabilization will be used to protect the confluence with UT4.

UT1 - Restoration

UT1 begins at the point where the channel transitions from ephemeral to intermittent. As with Big Bugaboo Creek Reach 1, this transition occurs directly below an existing headcut formed by shallow concentrated flow over cattle pasture. The concentrated flow and headcut will be addressed by constructing a small pocket wetland and stable outlet at the top of the reach. The reach flows from the northeast and extends to the confluence with Big Bugaboo Creek. This reach is proposed as restoration and the rebuilt channel will be tied into Big Bugaboo Creek at the approximate location of the current confluence. New channel will be constructed mostly offline using a priority 1 approach. Due to the steepness of this stream and the shape of the valley, the design Rosgen stream classification is B4.

UT2 Reach 1 – Enhancement II

UT2 Reach 1 also begins at the upstream extent of the intermittent channel. There is an ephemeral steppool stabilization measure to arrest an active headcut proposed for upstream of the jurisdictional

channel. This measure is proposed to eliminate erosion and a source of sediment and help maintain the functions of existing wetlands adjacent to the ephemeral channel. The enhancement II reach begins with a rock step pool to arrest another headcut with bank revetments at the downstream end. There will also be some minor grading of hillslopes adjacent to the channel to stabilize erosion.

UT2 Reach 2 – Enhancement I

UT2 Reach 2 is a short section of EI near the confluence with UT2A. UT2 Reach 2 has been designed to be a steep B type channel with the primary purposes of restoring dimension and profile as well as providing a stable confluence with UT2A. The bed was raised to achieve priority 1 restoration on Reach 3 and it was designed mostly on-line with a short offline portion at the downstream end to create more stable confluence conditions. Due to the steep grade that characterizes this reach, the design has incorporated step pool sequences to dissipate energy and hold grade.

UT2 Reach 3 - Restoration

UT2 Reach 3 begins at the confluence with UT2A and ties into a large bedrock feature at the start of UT2 Reach 4. Although it is somewhat less steep than Reach 2, UT2 Reach 3 was also designed as a B type channel that is moderately entrenched within the existing valley. Due to the lower slope and occasionally more open valley, the UT2 Reach 3 design includes some subtle meander pattern where the valley allows. Existing bankfull features were identified in the field and these features were used to guide bankfull slopes and placement of bankfull elevations.

UT2 Reach 4 – Enhancement I

UT2 Reach 4 is an enhancement 1 reach that is characterized by a series of bedrock features that serve as effective grade control as well as a wetland that lines the right bank for approximately half of the reach length. Although the profile appears stable, some erosion and bedform degradation is occurring due to the cattle access. The proposed design will leave the bedrock features intact and will include the addition of riffles in several areas where bedrock is not present. Bank grading will also be performed where necessary to reshape the channel and increase the stability of streambanks.

UT2 Reach 5 - Restoration

The UT2 Reach 5 design contains elements of both a B4 type stream and a C4b type stream, at different locations along the reach. It was designed to provide a gradual transition between the upstream B4 type reaches and the downstream C4b type reaches. Reach 5 begins in a very tight and entrenched valley. The valley is straight and there is little opportunity for meander pattern despite the relatively low slope, so this portion of the reach employs in-line pools similar to natural B type channels. Approximately 150 feet downstream of the Reach 5 starting point, the valley becomes less entrenched and the design incorporates slightly more meander pattern. In this configuration, bed form mostly follows pattern, with C-type, asymmetrical pools in the arcs and riffles in the tangents. Continuing downstream, the meander pattern becomes more pronounced and riffle-pool sequences become more regular as the valley allows for a greater belt width. By the end of UT2 Reach 5, the design pattern closely resembles that of a standard C type channel as it reaches the confluence with Big Bugaboo Creek. However, the slope remains typical of a B stream until the final 100 feet of the reach as the channel enters a wetland complex just upstream of the confluence with Big Bugaboo Creek. Bankfull elevations were set to increase access to the floodplain during higher flows.

UT2A Reach 1 – Enhancement II

The headwaters of UT2A originate at the downstream end of a large head cut. Upstream of the intermittent reach, the head cut will be stabilized with a step pool stabilization measure. UT2A Reach 1 is proposed as enhancement II as it flows through a stable wetland complex before the restoration reach begins at a second head cut where the channel exits the wetland. Special consideration was taken to

include the wetland surrounding UT2A Reach 1 (Wetland D, Figure 6) in the conservation easement and to protect the wetland by stabilizing bed erosion.

UT2A Reach 2 - Restoration

UT2A Reach 2 is incised throughout and flows through a tight, entrenched valley. The proposed approach for this reach is restoration. The design channel will be a steep B4 type stream; bankfull slopes mostly range from four to five percent and the stream has little ability to meander within the confined valley. The in-line pools and step pool sequences that are typical of B systems will be utilized to dissipate energy and drop grade in this steep reach. Many of the constructed riffles will feature angled log sills, relatively large bed material, or a mixture of the two in order to control grade and protect the bed. The bed will be raised to improve floodplain access. UT2A ties into UT2 at an identified existing bankfull feature.

<u>UT2B – Enhancement II</u>

UT2B is a short enhancement II reach that flows into UT2 Reach 4. The main treatment for this reach will be bank grading to stabilize an area of erosion. No channel realignment or raising of the bed will be necessary to tie into UT2.

UT3 – Restoration

UT3 is proposed for restoration and begins just above the existing Pond B and flows south to the confluence with Big Bugaboo Creek. UT3 is designed as a C4b type channel with meandering pattern and a moderately steep profile through the existing pond bed. The pond will be removed and the channel will be constructed with similar methods to the Pond A removal. Pond sediments along the channel corridor will be removed, this material will be replaced with compacted fill material mostly from the existing dam, and the restored channel will be constructed through the fill. The dam will be completely removed. The reach downstream of the pond bed is slightly steeper with a narrower valley and will have a less sinuous pattern. The majority of meander bends along this reach will be reinforced with bank revetments. To preserve the function of the wetlands upstream of Pond B to the extent possible, the designed channel bankfull profile has been kept near the existing grade to minimize changes in groundwater patterns in the area around the channel. Approximately 140 feet downstream of the dam, the channel flows off the project property and onto that of an adjacent, non-participating landowner, before meandering back onto the project property approximately 70 feet further downstream. The pattern was designed so that the adjacent landowner, whose property borders the right side of the channel, could retain access to the channel as requested. On-line restoration will occur through this section of UT3 in order to reconnect the channel with its natural floodplain while satisfying the nonparticipating landowner. The remaining section of UT3 down to the confluence with Big Bugaboo Creek has been designed as a meandering C4b stream type and will be constructed mostly offline on the left floodplain.

UT4 – Enhancement II

UT4 is a short channel that flows into Big Bugaboo Creek Reach 4 at the downstream end. This reach was identified during the site assessment after the proposal and IRT site visit. It was determined to be jurisdictional by the USACE. The reach is a natural, perennial stream channel that has a gravel and cobble substrate that will provide good aquatic habitat once cattle are excluded. The only treatment on this reach will be adding a rock outlet at the confluence with Big Bugaboo Reach 4 to protect a steep section of the UT4 from headcutting in the future.

UT5 – Not for Credit

UT5 is a short reach (86 LF) that flows into Big Bugaboo Creek Reach 1. This reach is not proposed for credit. The only treatment proposed is to raise the bed on the channel sufficiently to create a stable tiein to Big Bugaboo Creek.

<u>UT6 – Not for Credit</u>

UT6 is another short reach (244 LF) that is not proposed for credit. The reach flows into UT3 just below the existing dam. This reach has very steep side slopes and the bank on the left will be laid back to increase stability. It is not possible to lay back the right bank because it is up against a hill slope. The bed will also be raised slightly to tie into UT3.

6.7 Planting Plan

The wetland and buffer planting zones will be planted bare root seedlings, at a maximum spacing of 12 feet, from the tops of bank to the extents of the conservation easement or extents of disturbance where currently forested. Big Bugaboo Creek Reach 3 and Reach 4, UT2 Reach 5, and UT3 will be planted with a single row of live stakes along both tops of banks of the riffles and the outside bends I at a linear spacing of six feet. Both sides will also be planted with herbaceous plugs at normal baseflow stage at a linear spacing of 3 feet along the outsides of bends and 4 feet-spacing along both sides of the riffles. For the restoration and enhancement reaches on Big Bugaboo Creek Reach 1 and Reach 2, UT1, UT2 Reaches 2 through Reach 4, UT2A, and UT2B, a single row of live stakes will be planted offset 1-2 feet from the tops of bank along both sides of the riffles and the outsides of bends at a linear spacing of 6 feet. Herbaceous plugs will be planted between normal baseflow stage and tops of bank along outsides of bends at a linear spacing of 6 feet and on both sides of locations where log or rock sills are keyed into insides of bends. Permanent seed will be spread on streambanks, floodplain areas, and all disturbed areas within the conservation easement. Construction is not expected to finish until April 2020. Planting will fall outside the NCIRT recommended planting timeframe from November 15 through March 15 (NCIRT, 2016). However, planting will conclude before April 30, 2020. See Sheets 3.0 and 3.01 of the construction plans for the species lists and planting zones layout.

Construction practices are intended to minimize effects to soil properties, but some impacts are unavoidable. Ripping may be implemented to ameliorate soil compaction resulting from haul roads, stockpile areas, etc. Areas of compacted soil such as haul roads will be ripped to a depth of 18 inches in a grid-like pattern with a maximum rip shank spacing of six feet. Ripping will be performed during the driest conditions feasible to maximize shatter of the plow pan. Where grading is required, topsoil will be stockpiled and reapplied. Soil amendments may be incorporated to enhance survival and growth of planted vegetation as determined necessary by soil testing.

There are infrequent occurrences of multi-flora rose on the site as well as a few other invasive species (Table 5). The existing small rose plants will be treated and/or mechanically removed during construction. Invasive species presence will be monitored and treated as necessary throughout the monitoring period. Additional monitoring and management issues regarding vegetation are included in Sections 10 and 11.

The pasture grass that occurs throughout the project includes tall fescue (*Festuca* arundinacea). Wildlands will treat the existing fescue within the conservation easement to prevent any adverse effects on tree growth. The treatment will be a part of the site management plan and will include spraying the fescue throughout the easement with a boom sprayer and/or ring sprays around planted trees.

7.0 Determination of Credits

The final stream credits associated with the Site are listed in Table 19. Stream restoration is at a length to credit ratio of 1:1, enhancement I is at a ratio of 1.5:1, and enhancement II is at a ratio of 2.5:1. Approximately 0.2% of project buffers do not meet the minimum 50-foot requirement due to the fact that a short section of UT3 flows through the property of a non-participating landowner. The design approach and credit ratio for UT2 Reach 4 was agreed upon at the post-contract IRT site walk. The credit release schedule is located in Appendix 7.

Mitigation Assets and Components								
Project Segment	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Mitigation Category	Restoration Level	Priority Level	Mitigation Ratio (X:1)	Notes	
Big Bugaboo Creek Reach 1	966	868	Cool	R	PI	1		
Big Bugaboo Creek Reach 2	1,070	981	Cool	EI	PI	1.5	50 ft. not for credit due to internal crossing	
Big Bugaboo Creek Reach 3	1,602	1,764	Cool	R	PI	1	51 ft. not for credit due to internal crossing	
Big Bugaboo Creek Reach 4	465	394	Cool	EI	PII	1.5		
UT1	380	389	Cool	R	PI	1		
UT2 Reach 1	506	505	Cool	EII	N/A	2.5		
UT2 Reach 2	124	80	Cool	EI	PI	1.5	44 ft. not for credit due to utility crossing	
UT2 Reach 3	450	436	Cool	R	PI	1		
UT2 Reach 4	314	314	Cool	EI	N/A	1.5		
UT2 Reach 5	778	741	Cool	R	PI	1	50 ft. not for credit due to internal crossing	
UT2A Reach 1	211	135	Cool	EII	N/A	2.5	76 ft. not for credit due to utility crossing	
UT2A Reach 2	450	445	Cool	R	PI	1		
UT2B	168	168	Cool	EII	N/A	2.5		
UT3	1,281	1,412	Cool	R	PI	1	70 ft. not for credit due to non- participating landowner	
UT4	128	128	Cool	EII	N/A	4		

Table 19: Determination of Credits

Project Credits								
Restoration Level		Stream		Riparian	Non-Riparian Wetland	Coastal		
Restoration Level	Warm	Cool	Cold	Wetland	Non-Riparian wetiand	Marsh		
Restoration	0	6055.000	0	0	0	0		
Enhancement I	0	1179.333	0	0	0	0		
Enhancement II	0	355.200	0	0	0	0		
Preservation	0	0.000	0	0	0	0		
Totals	0	7589.533	0	0	0	0		

8.0 Performance Standards

The stream performance standards for the project will follow approved performance standards presented in the DMS Mitigation Plan Template (Version 2.3, June 2017), the Annual Monitoring Template (June 2017), and the Wilmington District Stream and Wetland Compensatory Mitigation Update issued October 2016 by the USACE and NCIRT. Annual monitoring and routine site visits will be conducted by a qualified scientist to assess the condition of the finished project. Specific performance standards that apply to this project are those described in the 2016 Compensatory Mitigation Update including Vegetation (Section V, B, Items 1 through 3) and Stream Channel Stability and Stream Hydrology Performance Standards (Section VI, B, Items 1 through 7). Table 20 summarizes performance standards.

Parameter	Monitoring Feature	Performance Standard
Dimension	Cross-Section Survey	BHR <1.2; ER <2.2 for C/E channels
Pattern and Profile	Visual Assessment	Should indicate stream stability
Substrate	Pebble Counts	Coarser material in riffles; finer particles in pools
Photo Documentation	Cross-Section PhotosPhoto Points	No excessive erosion or degradation of banks No mid-channel bars, Stable grade control
	Transducer	Four bankfull events during the 7-year period; in separate years
Hydrology	Flow Gage/ Transducer	30 days of consecutive flow on intermittent streams for each year
Vegetation	Vegetation Plots	 MY3 success criteria: 320 planted stems per acre, MY5 success criteria: 260 planted stems per acre, average of 7 feet in height in each plot. Subcanopy and shrub species will be disregarded for average height calculations. MY7 success criteria: 210 planted stems per acre, average of 10 feet in height in each plot. Subcanopy and shrub species will be disregarded for average height calculations.
Visual Assessment	CCPV	Signs of encroachment, stream instability, invasive species
Wetlands	Reverify the Extent of Jurisdiction at MY5	None

Table 20: Summary of Performance Standards

9.0 Monitoring Plan

The Site monitoring plan has been developed to ensure that the required performance standards are met, and project goals and objectives are achieved. Project monitoring requirements are shown in Table 21. Approximate locations of the proposed monitoring components are illustrated in Figure 10.

		Quantity/ Length by Reach							
Parameter	Monitoring Feature	Big Bugaboo Creek Reach 1-4	UT1	UT2 Reach 2-5	UT2A Reach 2	UT2B	UT3	Frequency	Notes
Dimension	Riffle Cross Sections	5	1	3	1	N/A	2	Year 1, 2, 3,	
Dimension	Pool Cross Section	4	N/A	1	N/A	N/A	1	5, & 7	
Pattern Profile	Pattern Longitudinal Profile	N/A					N/A	1	
Substrate	Reach Wide (RW)	4	1	3	1	N/A	1	Year 1, 2, 3, 5, & 7	
Undralage	Crest Gauge / Transducer	2	N/A	1	N/A	N/A	1	Quartarlu	2
Hydrology	Flow Gauge / Transducer	N/A	1	N/A	1	1	N/A	Quarterly	
Vegetation	CVS Level 2	15					Year 1, 2, 3, 5, & 7		
Exotic and Nuisance Vegetation								Annual	3
Project Boundary							Annual	4	
Reference Photos	Photographs			50				Annual	

Table 21: Monitoring Requirements

1. Pattern and profile will be assessed visually during semi-annual site visits. Longitudinal profile will be collected during MYO only, unless observations indicate lack of stability and profile survey is warranted in additional years.

2. Crest gages and/or transducers will be inspected quarterly and downloaded, evidence of bankfull events will be documented with a photo when possible. Transducers will be set to record stage once every four hours.

3. Locations of exotic and nuisance vegetation will be mapped.

4. Locations of vegetation damage, boundary encroachments, etc. will be mapped

10.0 Long-Term Management Plan

The site will be transferred to the North Carolina Department of Environmental Quality (NCDEQ) Stewardship Program. This party shall serve as conservation easement holder and long-term steward for the property and will conduct quarterly inspections of the site to ensure that restrictions required in the conservation easement are upheld. The NCDEQ Stewardship Program is developing an endowment system within the non-reverting, interest-bearing Conservation Lands Conservation Fund Account. The use of funds from the Endowment Account will be governed by North Carolina General Statue GS 113A-232(d)(3). Interest gained by the endowment fund may be used for the purpose of stewardship, monitoring, stewardship administration, and land transaction costs, if applicable. The Site Protection Instrument can be found in Appendix 8 and financial assurances are in Appendix 9.

11.0 Adaptive Management Plan

Upon completion of site construction Wildlands will implement the post-construction monitoring protocols previously defined in this document. Project maintenance will be performed as described Appendix 10. If, during the course of annual monitoring it is determined the site's ability to achieve site performance standards are jeopardized, DMS will notify the USACE of the need to develop a Plan of Corrective Action. The Plan of Corrective Action may be prepared using in-house technical staff or may require engineering and consulting services. Once the Corrective Action Plan is prepared and finalized DMS will:

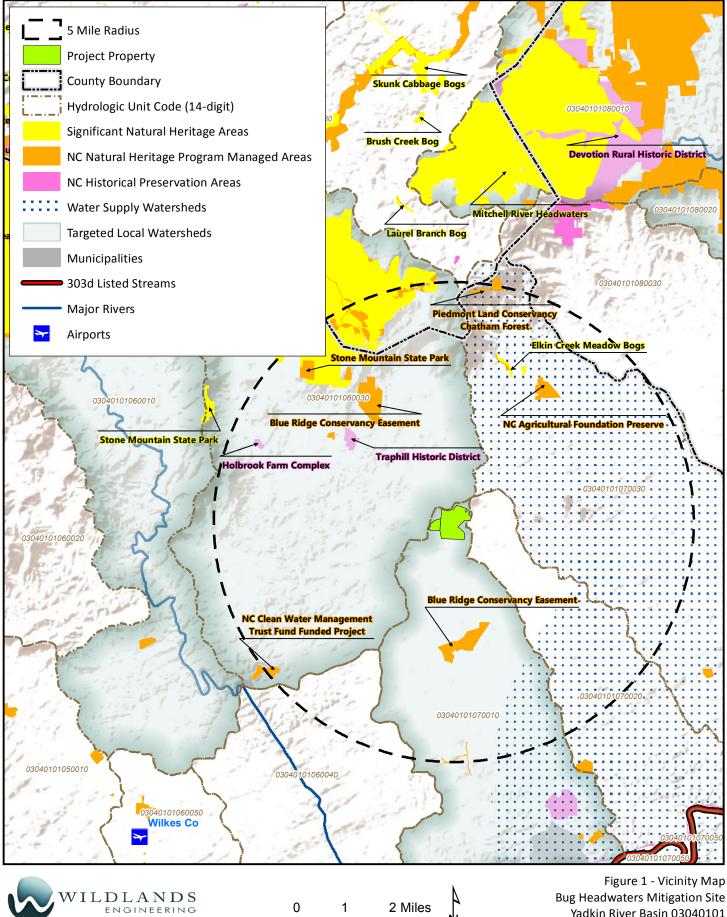
- Notify the USACE as required by the Nationwide 27 permit general conditions.
- Revise performance standards, maintenance requirements, and monitoring requirements as necessary and/or required by the USACE.
- Obtain other permits as necessary.
- Implement the Corrective Action Plan.
- Provide the USACE a Record Drawing of Corrective Actions. This document shall depict the extent and nature of the work performed.

Most of the planned land management activities will focus on improving the plant communities by controlling invasive plant species. The majority of the site currently lies in cattle pasture comprised largely of tall fescue with some Juncus and Carex species in lower lying areas. Multiflora rose also occurs in some areas within the existing pasture. A small portion of the site contains some forested buffer with a combination of native and invasive vegetation. Both the pasture and forested buffer will require invasive plant control methods to support establishment of the target plant communities.

The tall fescue will impact planted tree survival through below ground competition and allelopathy when it is a major component (>50%) of the plant community. Based on the existing plant community in the pasture, Wildlands plans to have a flexible approach to reducing impacts of tall fescue on planted trees. Areas where tall fescue is a major component of the plant community will either receive a broadcast herbicide treatment prior to construction or ring sprays covering a two-foot radius around every planted stem. Areas where tall fescue is a minor component of the pasture or where non-target effects will be too high on desirable plants will not receive immediate fescue treatment but will be monitored during the monitoring period and treated with ring sprays if necessary. The multiflora rose mostly occurs within the existing valleys and will be removed mechanically during construction.

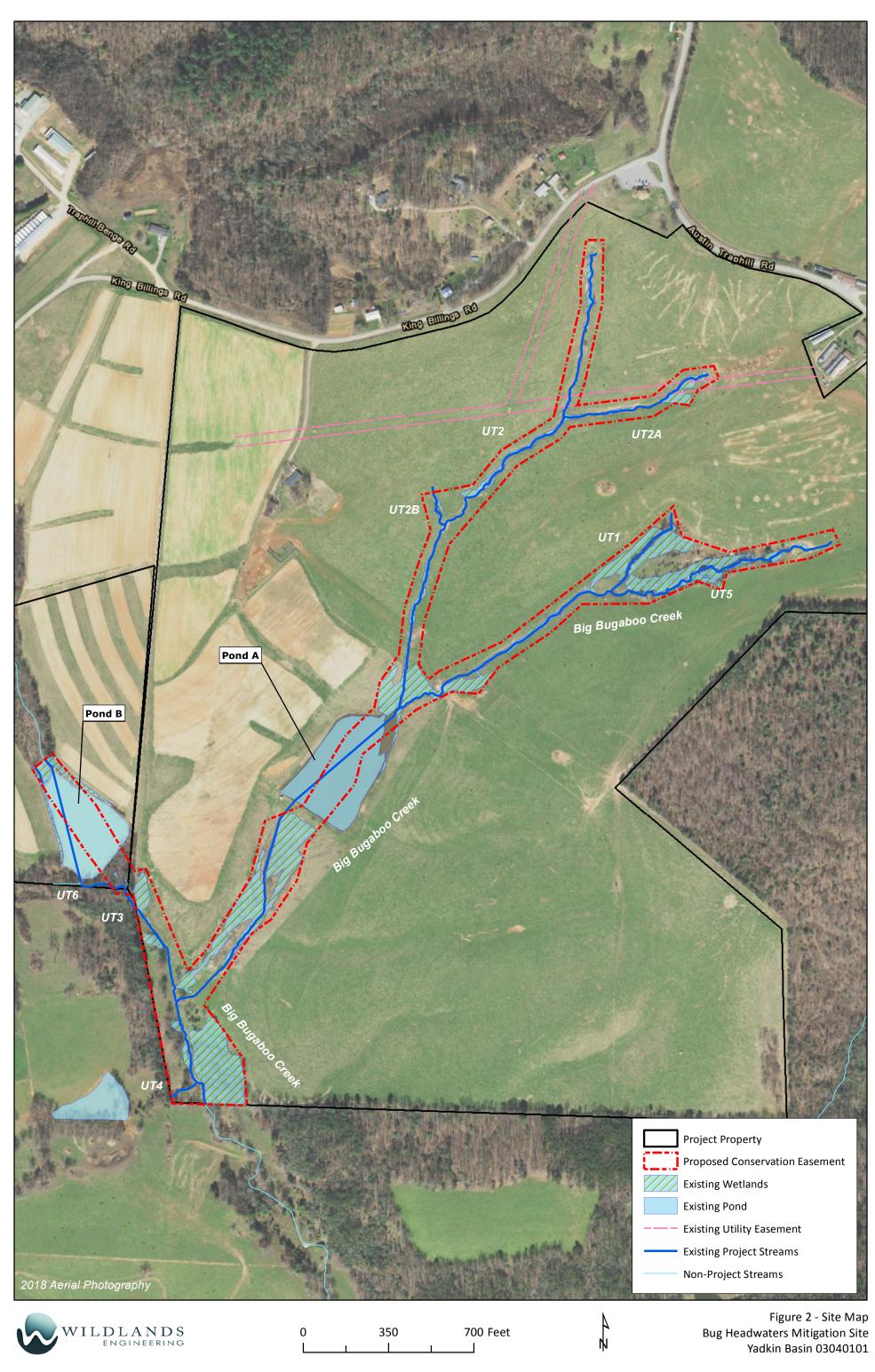
Invasive plant species present in the site's forested areas include tree of heaven, chinaberry, Chinese privet, and multiflora rose. These species will be treated using appropriate chemical control methods including foliar spraying and/or cutting and treating. Tree of heaven and chinaberry treatment will be prioritized before construction to limit seed dispersal and tree recruitment in the disturbed areas created by construction activities. Wildlands will also monitor for additional invasive plants not currently found on the Site and treat as necessary. Additionally, Wildlands will also monitor the Site for future land management issues, such as floodplain erosion, bare areas, and damaged infrastructure, that may arise during the monitoring period.

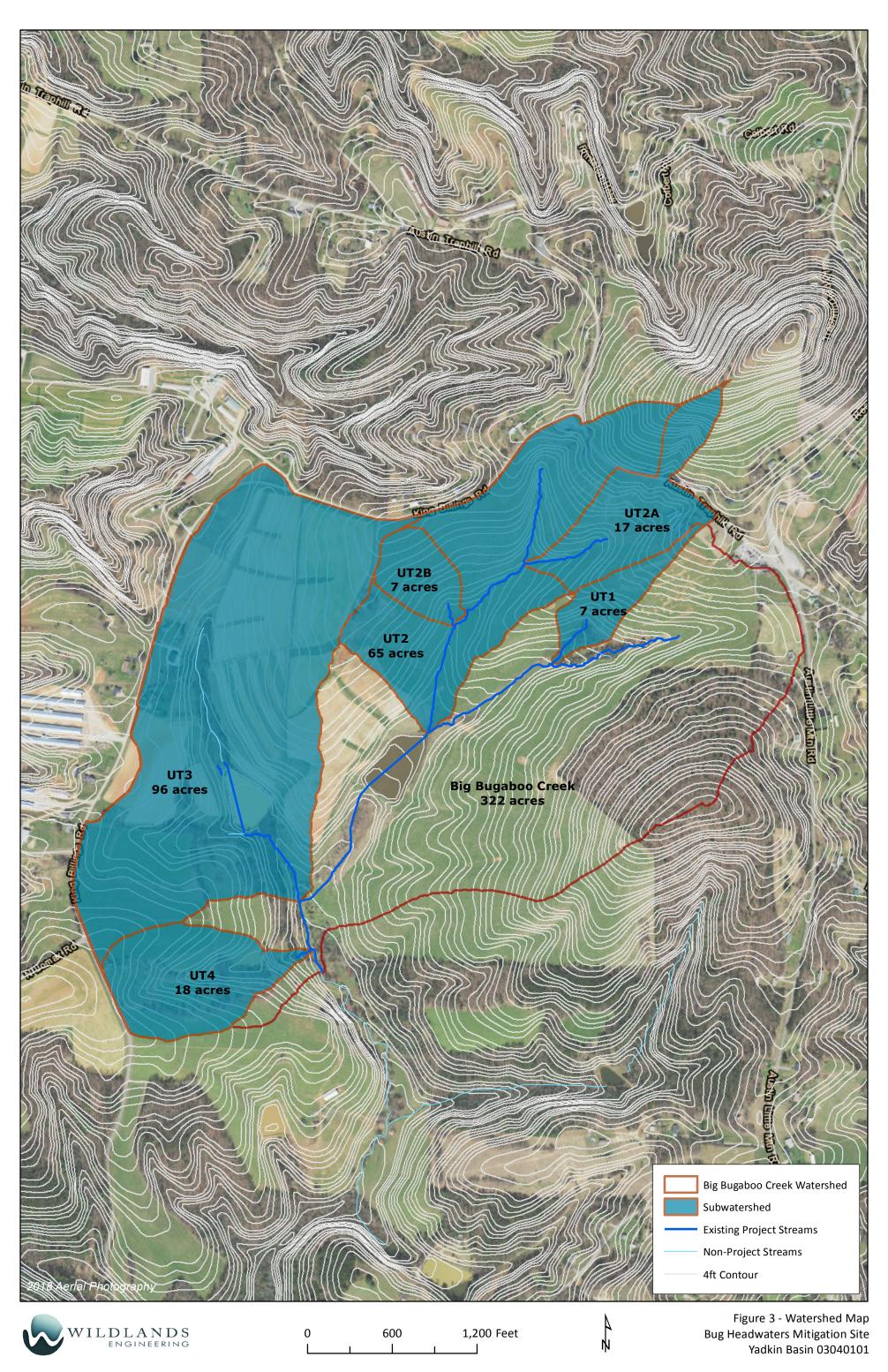
12.0 References

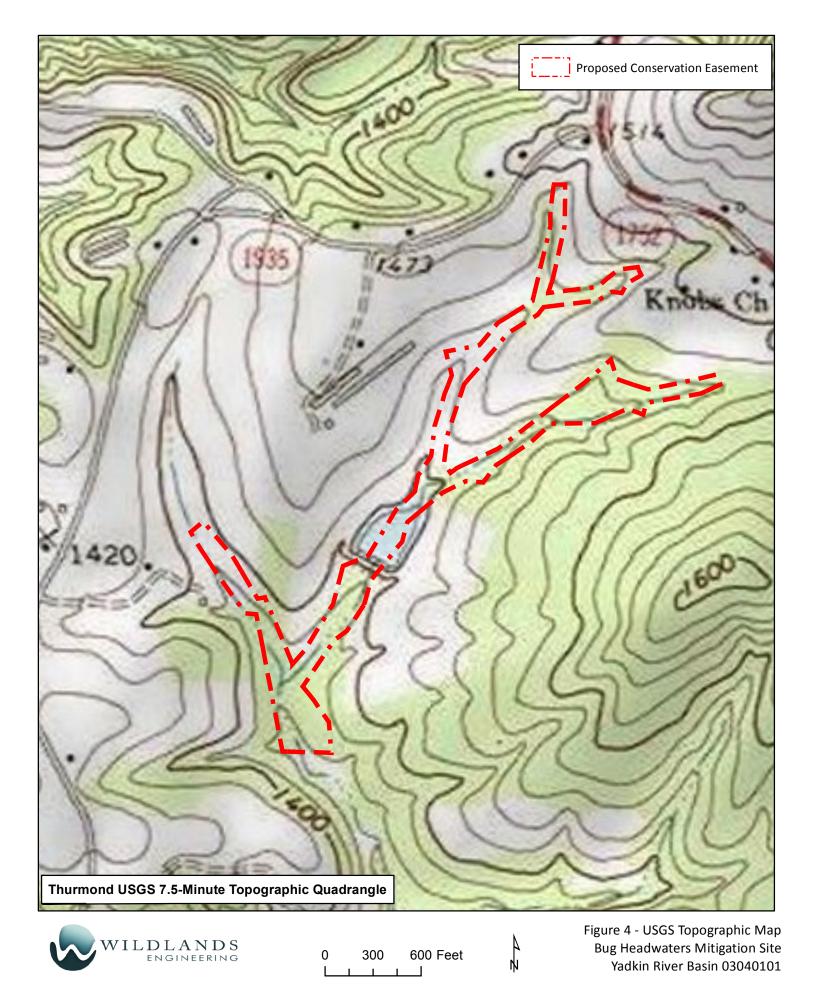

Harman, W.H., et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina

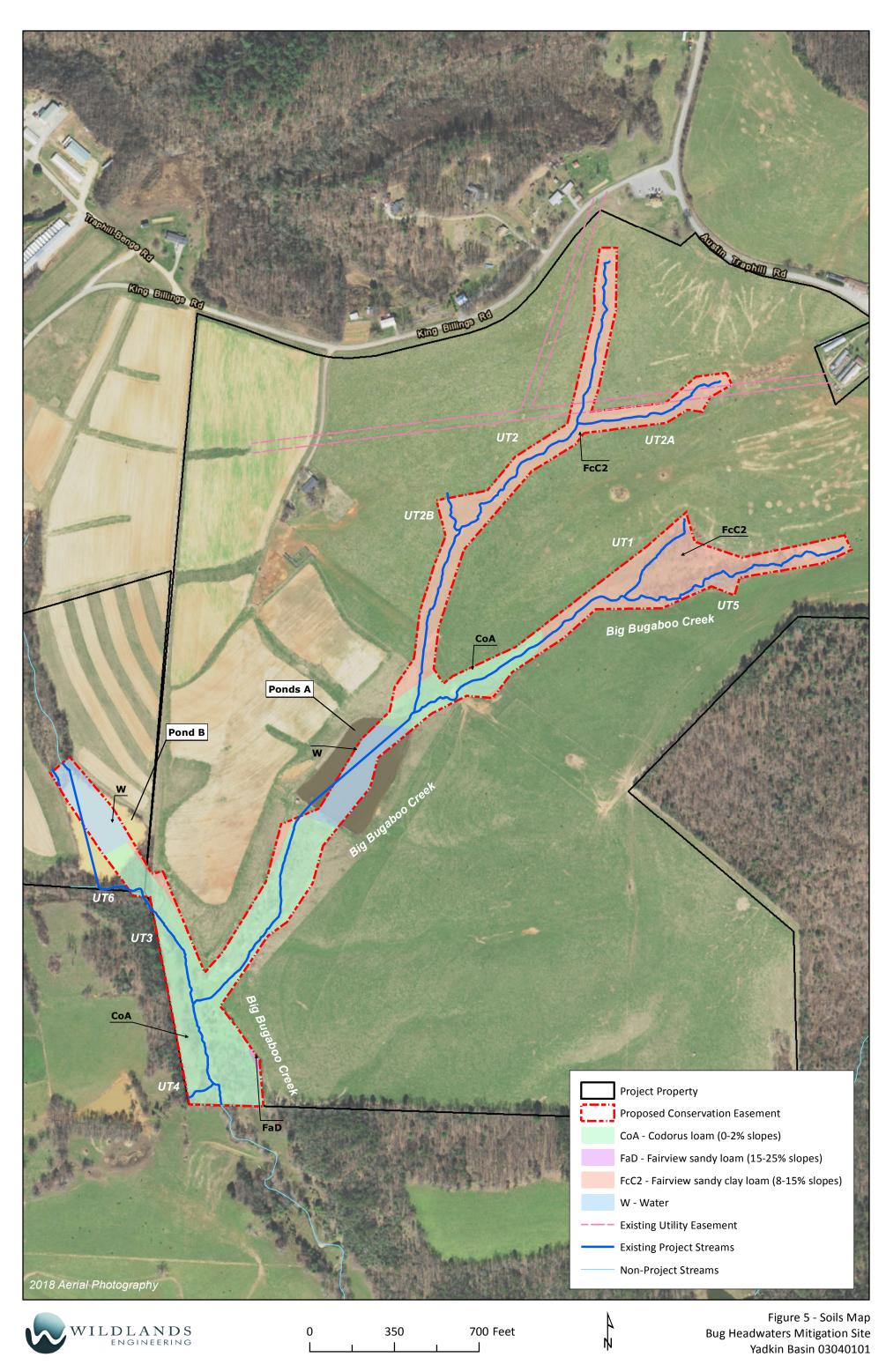
- North Carolina Division of Water Resources, 2008. Yadkin-Pee Dee River Basin Plan. <u>https://deq.nc.gov/about/divisions/water-resources/planning/basin-planning/water-resource-plans/yadkin-pee-dee-2008</u>
- North Carolina Ecosystem Enhancement Program (EEP), 2009. Upper Yadkin River Basin Restoration Priorities. <u>https://files.nc.gov/ncdeq/Mitigation%20Services/Watershed Planning/Yadkin River Basin/2009%20</u> Upper%20Yadkin%20RBRP Final%20Final%2C%2026feb%2709.pdf
- North Carolina Geological Survey (NCGS), 1985. Geologic map of North Carolina 1:500,000 scale. Compiled by Philip M. Brown at el. Raleigh, NC, NCGS. <u>http://ncdenr.maps.arcgis.com/apps/MapSeries/index.html?appid=a8281cbd24b84239b29cd2ca798d</u> 4a10
- North Carolina Interagency Review Team, 2016. Wilmington District Stream and Wetland Compensatory Mitigation Update. <u>https://saw-reg.usace.army.mil/PN/2016/Wilmington-District-Mitigation-Update.pdf</u>
- North Carolina Wildlife Resources Commission (WRC), 2015. North Carolina Wildlife Action Plan. <u>https://www.ncwildlife.org/plan#6718619-2015-wildlife-action-plan-document-downloads</u>

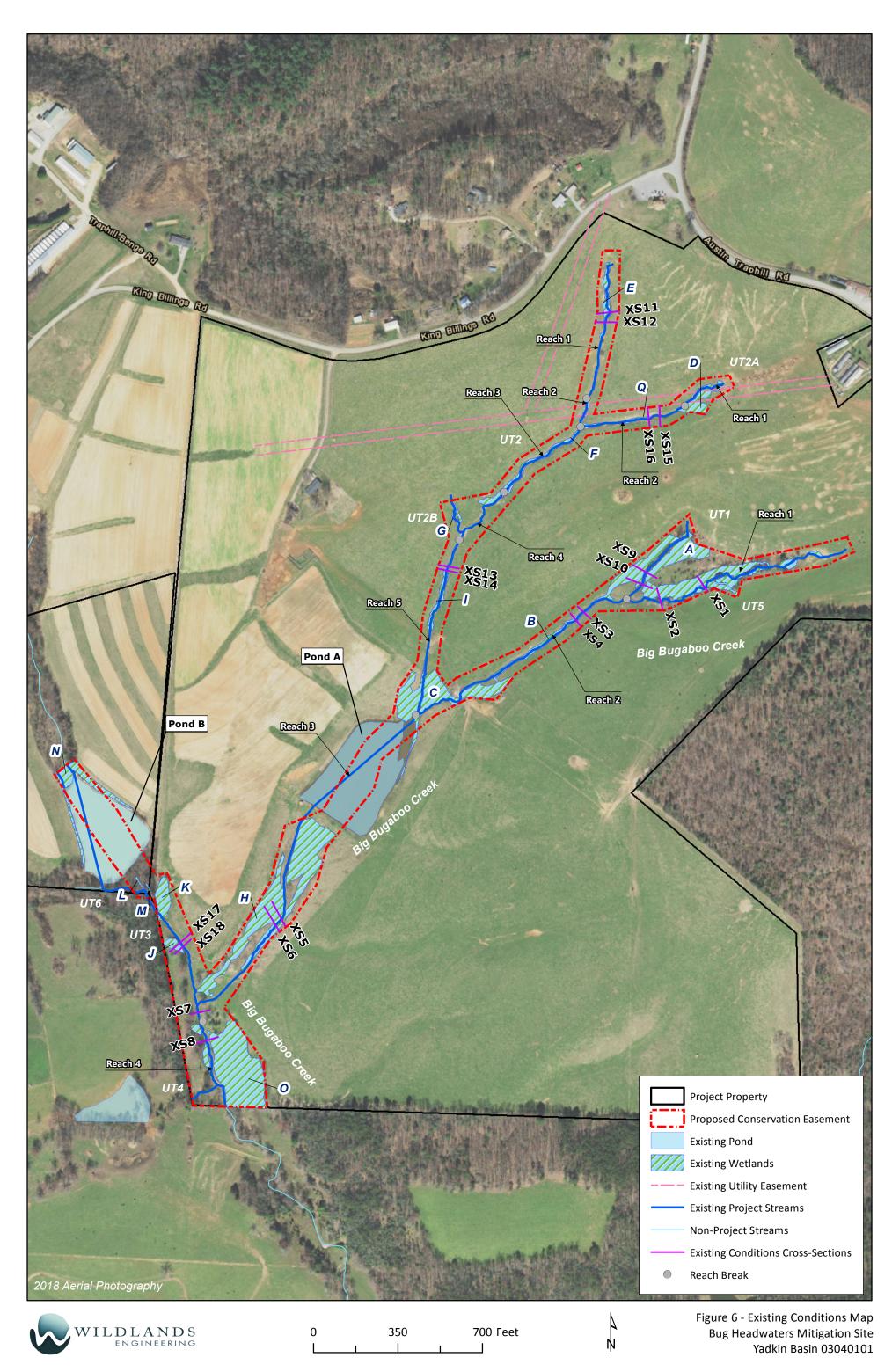
Walker, Alan, unpublished. NC Rural Mountain and Piedmont Regional Curve.

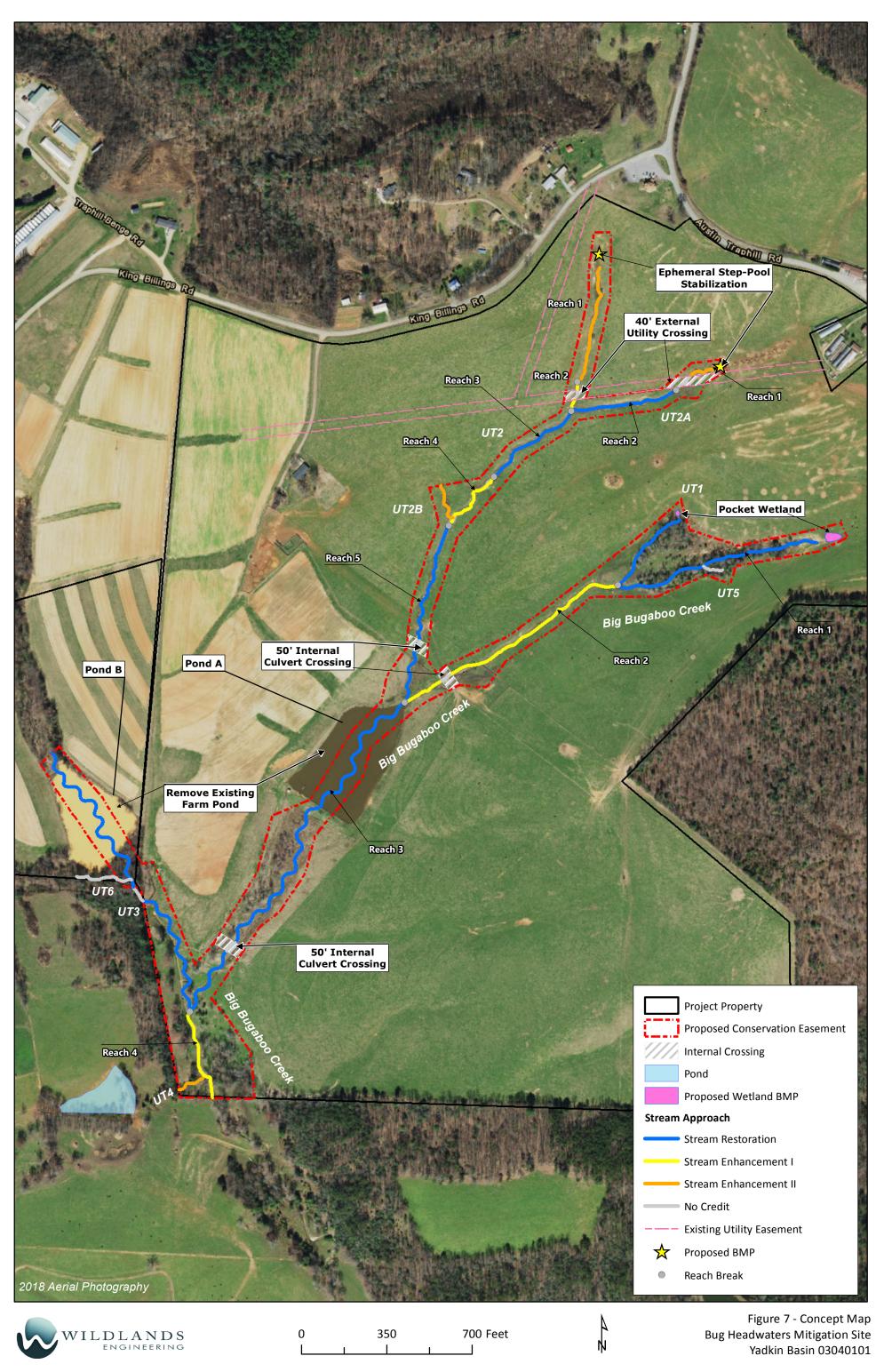


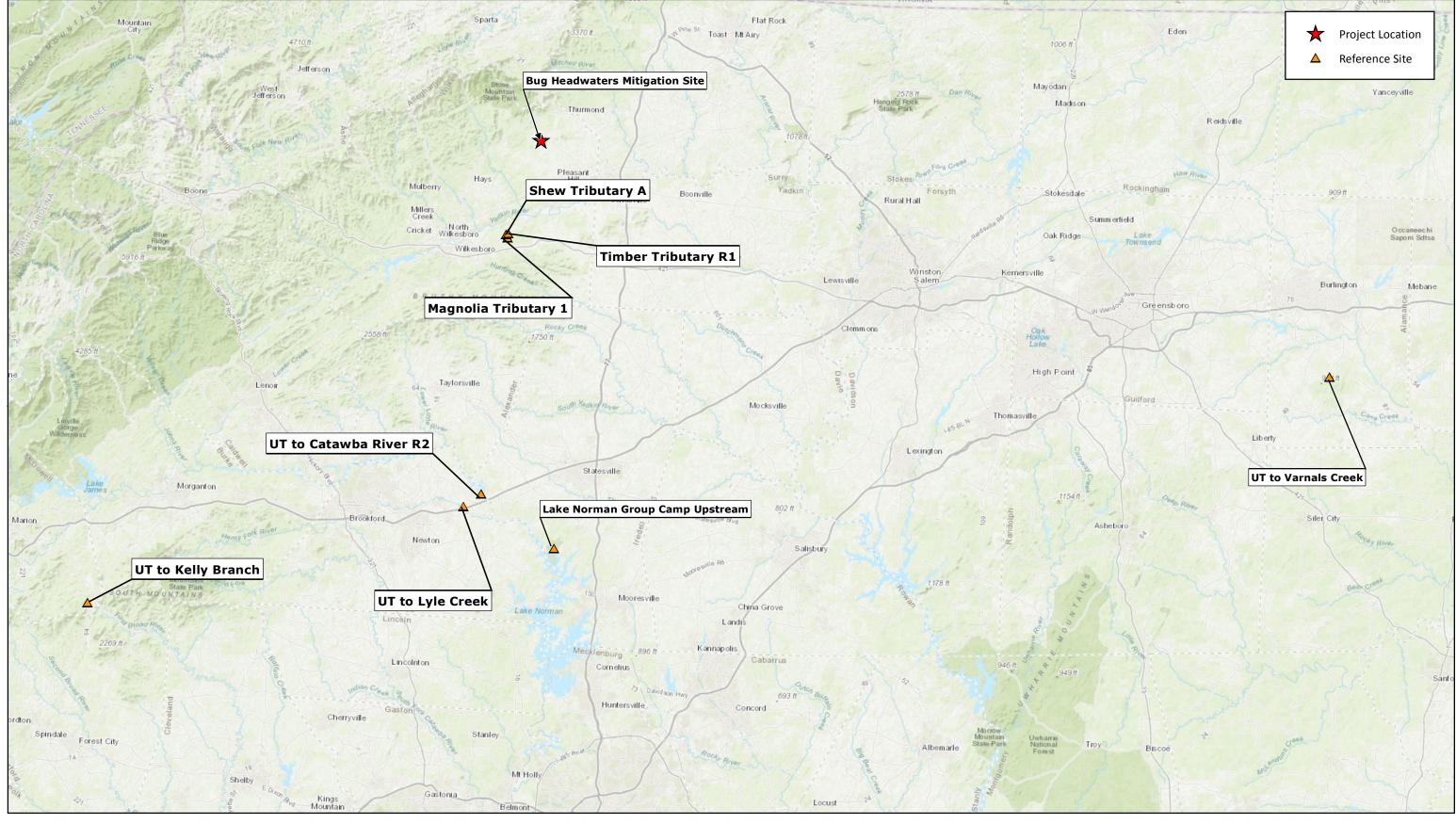

Figures




Ń


Yadkin River Basin 03040101





0	10		2	0 Miles

Figure 8 - Reference Reach Vicinity Map Bug Headwaters Mitigation Site Yadkin River Basin 03040101

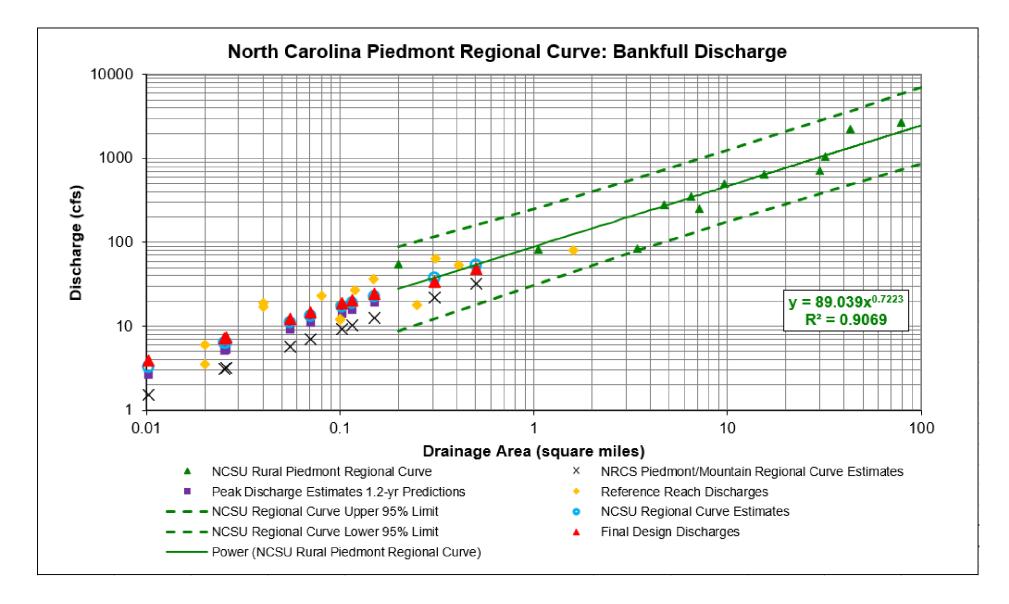
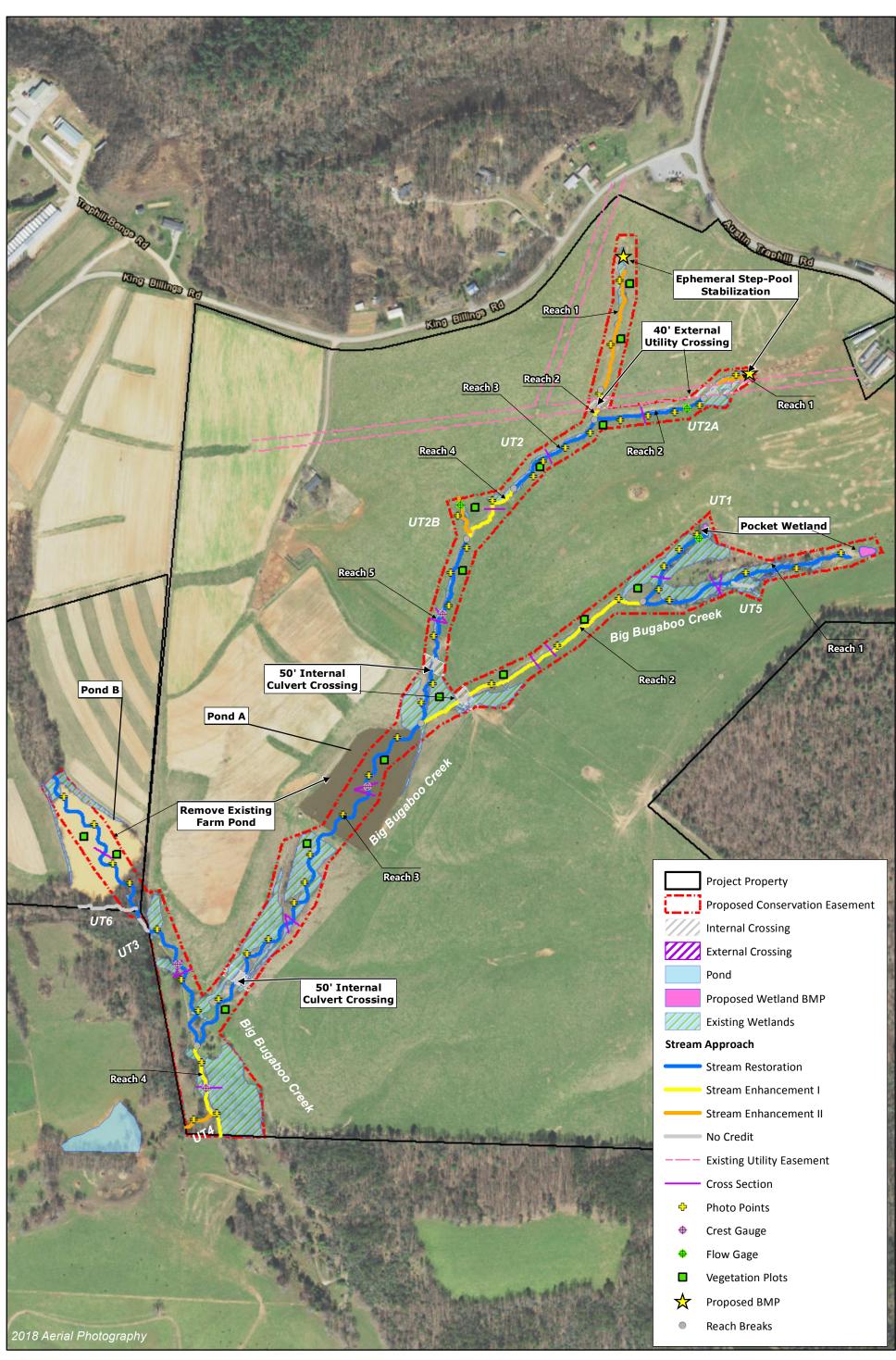



Figure 9 - Discharge Analysis Graph Bug Headwaters Mitigation Site Yadkin River Basin 03040101

0	350	700 Feet
	1	

ψ

Figure 10 - Proposed Monitoring Components Map Bug Headwaters Mitigation Site Yadkin Basin 03040101

Appendix 1

Bug Meadwaters

Date: 3/14/18	Project/Site: D	ig Bugalas	Latitude:	
Evaluator: Carolynzanza	County: Will	······································	Longitude:	
Total Points: Stream is at least intermittent 30.25 if ≥ 19 or perennial if $\geq 30^{*}$	Stream Determi Ephemeral Inte	ination (circle one) ermittent Perennia	Other e.g. Quad Name	:
A. Geomorphology (Subtotal = $\sqrt{7}$)	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank	* 0	1	Ø)	3
2. Sinuosity of channel along thalweg	0	1	2	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	Ð	2	3
4. Particle size of stream substrate	0	1,	<u> </u>	3
5. Active/relict floodplain	0	1	. 03	3
6. Depositional bars or benches	0	1	2	3
7. Recent alluvial deposits	0	1	2)	3
8. Headcuts	0		2	3
9. Grade control	0			1.5
10. Natural valley	0	0.5)	1	(15)
11. Sècond or greater order channel			Yes	= 3
a artificial ditches are not rated; see discussions in manual	· · · · · · · · · · · · · · · · · · ·			
B. Hydrology (Subtotal = (\mathcal{Q})	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
12. Presence of Baseflow	0	1	23	3
13. Iron oxidizing bacteria	B	1	2	3
14. Leaf litter	1.5	· (B)	0.5	0
15. Sediment on plants or debris	<u> </u>	0.5	1	1.5
16. Organic debris lines or piles		0.5	1	1.5
17. Soil-based evidence of high water table?	<u> </u>	o = 0	<u>্থি</u> es	<u> </u>
C. Biology (Subtotal = 7.25)				
18. Fibrous roots in streambed		2	1	0
19. Rooted upland plants in streambed	<u> 3</u>	2	1	0
20. Macrobenthos (note diversity and abundance)	Ø	1	2	3
21. Aquatic Mollusks	000	1	2	3
22. Fish	- D	0.5	1	1.5
23. Crayfish		0.5	1	1.5
24. Amphibians	<u></u>	0.5	1	1.5
25, Algae	0		1	1.5
26. Wetland plants in streambed		FACW = 0.752 ØBL	= 1.5 Other = ()
*perennial streams may also be identified using other methods.	, See p. 35 of manual	l		
Notes:				
Sketch:				
	\backslash		,	

THE REAL PROPERTY OF

Bug Headwaters

Date: 3/14/18	Project/Site:	UTI	Latitude:	
Evaluator: Course lyn	County: W	Wer	Longitude:	
Total Points: Stream is at least intermittent if \geq 19 or perennial if \geq 30*28	Stream Determ	ination (circle one) ermittent Perennial	Other e.g. Quad Name:	
A. Geomorphology (Subtotal = $\sqrt{5}$)		1 H F 1		
	Absent	Weak	Moderate	Strong
1 ^{a.} Continuity of channel bed and bank 2. Sinuosity of channel along thalweg	0	1	Ø	3
3. In-channel structure: ex. riffle-pool, step-pool,	0		2	3
ripple-pool sequence	0	Œ	2	3
4. Particle size of stream substrate	0	1	2	(J)
5. Active/relict floodplain	0	1	2	3
6. Depositional bars or benches	· 0	(PD)	2	3
7. Recent alluvial deposits	0	1	2	
8. Headcuts	00	1	2	3
9. Grade control	0	(05)	1	1.5
10. Natural valley	0	0.5	1	
11. Second or greater order channel			Yes	= 3
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal =, 5_)				
12. Presence of Baseflow	0	1	$\langle 2 \rangle$	3
13. Iron oxidizing bacteria	0	1	2	3
14. Leaf litter	(13)	1	0.5	0
15. Sediment on plants or debris	é de la companya de l	0.5	1	1.5
16. Organic debris lines or piles		0.5	1	1.5
17. Soil-based evidence of high water table?	No	$\mathbf{p} = 0$	etes :	9
C. Biology (Subtotal = (2,5))				
18. Fibrous roots in streambed	3	2	CES	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	0	1		3
21. Aquatic Mollusks	605	1	2	3
22. Fish	(IP)	0.5	1	1.5
23. Crayfish	<u> </u>	0.5	1	1.5
24. Amphibians	CDD	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OBL	= 1.5 (Other = 0	
*perennial streams may also be identified using other methods.	See p. 35 of manua	l.		
Notes: 5 brack hy				
/				
Sketch:				
		н. На селото с		

4

Bug Neadwaterr

Date: 3/14/18	Project/Site: 🔾	TCKI	Latitude:	Latitude:		
Evaluator: Caroly Carlasa	County:	Kies	Longitude:			
Fotal Points: Stream is at least intermittent F≥ 19 or perennial if ≥ 30*	Stream Determi Ephemeral (Inte	nation (circle one) rmittent Perennial	Other e.g. Quad Name	Other e.g. Quad Name:		
A. Geomorphology (Subtotal =6)	Absent	Weak	Moderate	Strong		
^a Continuity of channel bed and bank	0	1		3		
. Sinuosity of channel along thalweg	0	(B)	2	3		
 In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence 	0	G	2	· 3		
. Particle size of stream substrate	0	B	2.	.3		
. Active/relict floodptain	0	1	2	(3)		
. Depositional bars or benches	0	1		3		
. Recent alluvial deposits	0	1	<u>(23)</u>	3		
. Headcuts	0	Ø	2	3		
. Grade control	0	0.5	1	(1.5)		
0. Natural valley	0	0,5	1	(1.5)		
1. Second or greater order channel	NO	=95	Yes = 3			
artificial ditches are not rated; see discussions in manual B . Hydrology (Subtotal = 65)						
2. Presence of Baseflow	0	1	\bigcirc	3		
3. Iron oxidizing bacteria		1	2	3		
4. Leaf litter	C135	· 1	0.5	0		
5. Sediment on plants or debris		0.5	1	1.5		
6. Organic debris lines or piles	ROD	0.5	1	1.5		
7. Soil-based evidence of high water table?		= 0	(CYes	3)		
2. Biology (Subtotal = 7.25)						
8. Fibrous roots in streambed	3	2		0		
9. Rooted upland plants in streambed	C3	2	1	0		
0. Macrobenthos (note diversity and abundance)	0	1		<3		
1. Aquatic Mollusks		1	2	3		
2. Fish		0.5	1	1.5		
3. Crayfish		0.5 👘 🔌	1	1.5		
4. Amphibians		0.5	1	1.5		
5. Algae		05	1	1.5		
3. Wetland plants in streambed		FACW = 0.75; OBI	= 1.5 Other = 0			
perennial streams may also be identified using other methods otes: 35 and fry global and the ZM	s. See p. 35 of manual.		\$	· · · · · · · · · · · · · · · · · · ·		

1.2. Marking and the second

Bug Headwaterr

- ----

Date: 3/14/18	Project/Site: Bug Magwater	Latitude:
Evaluator: Cardyn Lanza	County: WINKES	Longitude:
Total Points: Stream is at least intermittent if ≥ 19 or perennial if ≥ 30* 32	Stream Determination (circle one) Ephemeral Intermittent Perennia	Other e.g. Quad Name:

A. Geomorphology (Subtotal = 18,5)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	(2)	3
2. Sinuosity of channel along thalweg	0	1	(23,	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	2	3
4. Particle size of stream substrate	0	1	2	3
5. Active/relict floodplain	0	1	2 .	3
6. Depositional bars or benches	0	1	(2)	3
7. Recent alluvial deposits	0	1	(23	3
8. Headcuts		1	2	3
9. Grade control	0	0.5	\bigcirc	1.5
10. Natural valley	0	0.5	1	((1:5))
11. Second or greater order channel		o = 0	Yes	= 3
^a artificial ditches are not rated; see discussions in manual		· · · · · · · · · · · · · · · · · · ·		
B. Hydrology (Subtotal = <u>5</u>)				
12. Presence of Baseflow	0	1	2	3
13. Iron oxidizing bacteria		1	2	3
14. Leaf litter	(1.5)	1	0.5	0
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles		0,5	1	1.5
17. Soil-based evidence of high water table?	N	o = 0	Yes	= 3
C. Biology (Subtotal =)				Net you, During a state of the
18. Fibrous roots in streambed	3	(23)	1	0

To, Fibrous tools in streambed	3	(2)	I	0
19. Rooted upland plants in streambed	33	2	1	0
20. Macrobenthos (note diversity and abundance)	0	1	2	(23)
21. Aquatic Mollusks		Ð	2	3
22. Fish	B	0.5	1	1.5
23. Crayfish	CO-B	0.5	1	1.5
24. Amphibians	800	0.5	1	1.5
25. Algae	0	0.5	1 、	(1.5)
26. Wetland plants in streambed		FACW = 0.75; C)BL = 1,5 @ther =	ð
*nonomial of a program were also be the stiffer it with a stiffer of the state of t			and the second	r

*perennial streams may also be identified using other methods. See p. 35 of manual.

× ·

Notes: 3 Blackfilly, Midge wom

Sketch:

Bug Headwaters

Date: 3/14/18	Project/Site:	ASTR	Latitude:	
valuator: Carolynhanza	County:	Ker	Longitude:	
Total Points: Stream is at least intermittent 25,75 ≥ 19 or perennial if ≥ 30* 25,75	Stream Determi Ephemeral Inte	nation (circle one) rmittent>Perennial	Other e.g. Quad Name:	······
. Geomorphology (Subtotal =)	Absent	Weak	Moderate	Strong
^a Continuity of channel bed and bank	0	1	B	3
. Sinuosity of channel along thalweg	0	1	2	3
. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	0	2	3
. Particle size of stream substrate	0.	1	$\langle \mathcal{D} \rangle$	3
. Active/relict floodplain	0		2	3
. Depositional bars or benches	0		2	3
. Recent alluvial deposits	0	15	2	3
. Headcuts	0	<u> </u>	2	3
. Grade control	0	0.5	1	1.5
0. Natural valley	0	0.5	1	(1.5)
1. Second or greater order channel	No		Yes =	= 3
artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal =) 2. Presence of Baseflow	0	1	C2-	3
3. Iron oxidizing bacteria	3	1	2	3
4. Leaf litter	1.5	1	6.50	0
5. Sediment on plants or debris	0		1	1,5
6. Organic debris lines or piles	033	0,5	1	1.5
7. Soil-based evidence of high water table?	. No	= 0	Kes =	
Biology (Subtotal = 6.75)	······································	······································		Construction of the second sec
8. Fibrous roots in streambed	3	2	A S	0
9. Rooted upland plants in streambed	3	2	7	0
0. Macrobenthos (note diversity and abundance)	O O	(CTS)	2	3
1. Aquatic Moliusks	CT ?	1	2	3
2. Fish		0.5	1	1.5
3. Crayfish		0.5	1	1.5
4. Amphibians	ED	0.5	1	1.5
5. Algae	0	0.5	A S	1.5
3. Wetland plants in streambed		FACW 0.750 OBL	= 1.5 Other = 0	
s. violano planto in su cambeu				

Sketch:

TANK BERTEN

NC DWQ Stream Identification Form Version 4.11 Date: 11/19/18 Project/Site: Bug Headwaters Latitude: County: W. Wes Evaluator: C. Lanza Longitude: Total Points: Other UTZB Stream Determination (circle one) 33 Stream is at least intermittent 7 Ephemeral Intermittent Perennial e.g. Quad Name: if \geq 19 or perennial if \geq 30* A. Geomorphology (Subtotal = Absent Weak Moderate Strong 1^{a.} Continuity of channel bed and bank 0 1-> 2 3 2. Sinuosity of channel along thalweg 0 $\overline{(2)}$ 1 3 3. In-channel structure: ex. riffle-pool, step-pool, 0 Œ 2 3 ripple-pool sequence 4. Particle size of stream substrate 0 1 2 Remain 33 5. Active/relict floodplain 0 0 2 3 6. Depositional bars or benches 0 17 2 3 7. Recent alluvial deposits 0 1-2 3 8. Headcuts 1 0 2 3 9. Grade control 0 (0.5)1 1.5 10. Natural valley 0 0.5 1 1:5> 11. Second or greater order channel $\langle No = 0 \rangle$ Yes = 3 artificial ditches are not rated; see discussions in manual Q.S B: Hydrology (Subtotal = 12. Presence of Baseflow 0 1 2 13. Iron oxidizing bacteria 0 1 2 14. Leaf litter SFS 1 0.5 0 15. Sediment on plants or debris 0.5 0 1 1.5 16. Organic debris lines or piles \bigcirc 0.5 1 1.5 17. Soil-based evidence of high water table? No = 0Yes = 3C. Biology (Subtotal = 10.5) 18. Fibrous roots in streambed 3 2 1 0 19. Rooted upland plants in streambed 3 2 1 0 20. Macrobenthos (note diversity and abundance) 0 \sim 2 3 21. Aquatic Mollusks 0 C2* 1 3, 22. Fish P 0.5 1.5 1 23. Crayfish $\overline{\mathbb{O}}$ 0.5 1 1.5 24. Amphibians 0 0.5 1.5 1 25. Algae 0.5 Ω 1 (1.5)26. Wetland plants in streambed FACW = 0.75; OBL = 1.5 Other = 0 *perennial streams may also be identified using other methods. See p. 35 of manual. not answer reaflette by of no brees Notes: Junard snuils (4) Blackfies, NO d: d but no organic gran little in streen bud. Sketch:

Bug Head water ?

				
Date: 3/13/18	Project/Site:	72	Latitude:	
Evaluator: Carolyn	County:	her	Longitude:	
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determi Ephemeral Inte	nation (circle one) rmittent Perennia)	Other e.g. Quad Name	:
	<u></u>	And a state of the		
A. Geomorphology (Subtotal = 16,5)	Absent	Weak	Moderate	Strong
1 ^a . Continuity of channel bed and bank	0	1	2	
2. Sinuosity of channel along thalweg	0 ·	0	2	3
3. In-channel structure: ex. riffle-pool, step-pool,	0	153	2	3
ripple-pool sequence		Cument		
4. Particle size of stream substrate	0	1	22	3
5. Active/relict floodplain	0	1	2	
6. Depositional bars or benches	0	1		3
7. Recent alluvial deposits	0	1	<u>(2)</u>	3
8. Headcuts	0		2	3
9. Grade control	0	0.5	1	1.5
10. Natural valley	0	0.5	1	(1.5)
11. Second or greater order channel		$\overline{0} = 0$	Yes	= 3
^a artificial ditches are not rated; see discussions in manual				
B. Hydrology (Subtotal = 10.5)				
12. Presence of Baseflow	0	1	2	(3)
13. Iron oxidizing bacteria	Q	1	C25	3
14. Leaf litter	(15)	1	0.5	0
15. Sediment on plants or debris	0	(0.5)	1	1.5
16. Organic debris lines or piles	0	0.5	1	1.5
17. Soll-based evidence of high water table?	No	o = 0	(Yeŝ	= 3)
C. Biology (Subtotal = 5.5)	1	, , I.,_		The second
18. Fibrous roots in streambed	3	2	1	0
19. Rooted upland plants in streambed	33	2	1	0
20. Macrobenthos (note diversity and abundance)	0	1	\sim	3
21. Aquatic Mollusks		1	2	3
22. Fish	00	0.5	1	1.5
23. Crayfish	(C 0 3)	0.5	1	1.5
24. Amphibians	00	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed	I	FACW = 0.75; OB	L = 1.5 Other =	
*perennial streams may also be identified using other method	ds. See p. 35 of manua			
Notes: black Ply Lawa, midge, wow				
Successive and the start to the	1			
				· · ·
Sketch:				

Date: 11/20/18	Project/Site: //°	r4	Latitude:	
Evaluator: C. Neaves	County: W. IV	V. Mus Longitude:		
Total Points:Stream is at least intermittentif \geq 19 or perennial if \geq 30*	Stream Determi	Stream Determination (circle one) Ephemeral Intermittent Perennial e		:
A. Geomorphology (Subtotal = 14)	Absent	Weak	Moderate	Strong
1 ^a Continuity of channel bed and bank	0	1	2	3
2. Sinuosity of channel along thalweg	0	1	27	3
3. In-channel structure: ex. riffle-pool, step-pool, ripple-pool sequence	0	1	(2)	3
4. Particle size of stream substrate	0	1	2	(3)
5. Active/relict floodplain	0	1	(2)	3
6. Depositional bars or benches	0	1	22	3
7. Recent alluvial deposits	0		2	3
8. Headcuts	0	1	$\langle 2 \rangle$	3
9. Grade control	0	0.5	C12	1.5
10. Natural valley	0	Q.5	(1)	1.5
11. Second or greater order channel	(No	= 0	Yes	= 3
^a artificial ditches are not rated; see discussions in manual B. Hydrology (Subtotal =)				and the second
12. Presence of Baseflow	0	1	2	3. Same
13. Iron oxidizíng bacteria	0	1	< <u>2</u>	3
14. Leaf litter	1.5	(T)	0.5	0
15. Sediment on plants or debris	0	0.5	1	1.5
16. Organic debris lines or piles	0	0.5	<u> </u>	1.5
17. Soil-based evidence of high water table?	No	= 0	(Yes:	= <u>3</u>
C. Biology (Subtotal =)				
18. Fibrous roots in streambed	3	(2)	1	0
19. Rooted upland plants in streambed	3	2	1	0
20. Macrobenthos (note diversity and abundance)	0		2	3
21. Aquatic Mollusks	<u>(</u> 0)	1	2	3
22. Fish	0	0.5	1	1.5
23. Crayfish	<u>(</u>)	0.5	1	1.5
24. Amphibians	0	0.5	1	1.5
25. Algae	0	0.5	1	1.5
26. Wetland plants in streambed		FACW = 0.75; OBL	. = 1.5 Other = (),?
*perennial streams may also be identified using other method	s. See p. 35 of manual			
Notes:				
Sketch:				

Stream Site Name Big Bugaboo R1	Date of Evaluation	11/19/2018
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		YES
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(2) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	MEDIUM	
(2) In-stream Habitat	HIGH	
(2) In-Stream Hadrat (3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	LOW	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

Stream Site Name Big Bugaboo R2	Date of Evaluation	11/19/18
Stream Category Pb2	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		YES
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	All Streams	Intermitten
(1) Hydrology	MEDIUM	
(2) Baseflow	MEDIUM	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	MEDIUM	
(3) Substrate	HIGH	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat		
	NA NA LOW	

Date of Evaluation	11/19/18
Assessor Name/Organization	C. Lanza
	YES NO
)	YES
	Perennial
	Assessor Name/Organization

Function Class Rating Summary	All Streams	Intermitten
(1) Hydrology	LOW	
(2) Baseflow	MEDIUM	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	LOW	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	LOW	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	LOW	
(3) Baseflow	MEDIUM	
(3) Substrate	HIGH	
(3) Stream Stability	LOW	
(3) In-stream Habitat	LOW	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

Date of Evaluation	11/19/18
Assessor Name/Organization	C. Lanza
	YES NO
	YES
	Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	MEDIUM	
(2) Baseflow	HIGH	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	MEDIUM	
(4) Microtopography	LOW	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	MEDIUM	
	NA	
(2) Stream/Intertidal Zone Interaction		
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	MEDIUM	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	HIGH	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	MEDIUM	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat Overall	NA MEDIUM	

Stream Site Name UT1	Date of Evaluation	11/19/18
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		YES
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Intermittent

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitter
(1) Hydrology	LOW	LOW
(2) Baseflow	HIGH	HIGH
(2) Flood Flow	LOW	LOW
(3) Streamside Area Attenuation	LOW	LOW
(4) Floodplain Access	LOW	LOW
(4) Wooded Riparian Buffer	LOW	LOW
(4) Microtopography	NA	NA
(3) Stream Stability	LOW	LOW
(4) Channel Stability	LOW	LOW
(4) Sediment Transport	HIGH	HIGH
(4) Stream Geomorphology	LOW	LOW
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(2) Tidal Marsh Stream Stability (3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	HIGH	HIGH
(2) Streamside Area Vegetation	LOW	LOW
(3) Upland Pollutant Filtration	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Indicators of Stressors	YES	YES
(2) Aquatic Life Tolerance	LOW	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	MEDIUM	MEDIUM
(2) In-stream Habitat	HIGH	HIGH
(3) Baseflow	HIGH	HIGH
(3) Substrate	HIGH	HIGH
(3) Stream Stability	LOW	LOW
(3) In-stream Habitat	HIGH	HIGH
(2) Stream-side Habitat	LOW	LOW
(3) Stream-side Habitat	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA	NA
(4) Tidal Marsh Channel Stability	NA	NA
(4) Tidal Marsh Stream Geomorphology	NA	NA
(3) Tidal Marsh In-stream Habitat (2) Intertidal Zone Habitat	NA	NA
	NA	NA

Stream Site Name UT2 Reach 1	Date of Evaluation	11/19/18
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (V/N)		NO
Notes of Field Assessment Form (Y/N)		
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Intermittent

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitter
(1) Hydrology	MEDIUM	MEDIUM
(2) Baseflow	HIGH	HIGH
(2) Flood Flow	MEDIUM	MEDIUM
(3) Streamside Area Attenuation	LOW	LOW
(4) Floodplain Access	LOW	LOW
(4) Wooded Riparian Buffer	LOW	LOW
(4) Microtopography	NA	NA
(3) Stream Stability	HIGH	HIGH
(4) Channel Stability	MEDIUM	MEDIUM
(4) Sediment Transport	HIGH	HIGH
(4) Stream Geomorphology	HIGH	HIGH
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	HIGH	HIGH
(2) Streamside Area Vegetation	LOW	LOW
(3) Upland Pollutant Filtration	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Indicators of Stressors	YES	YES
(2) Aquatic Life Tolerance	LOW	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	MEDIUM	MEDIUM
(2) In-stream Habitat	HIGH	HIGH
(3) Baseflow	HIGH	HIGH
(3) Substrate	HIGH	HIGH
(3) Stream Stability	MEDIUM	MEDIUM
(3) In-stream Habitat	HIGH	HIGH
(2) Stream-side Habitat	LOW	LOW
(3) Stream-side Habitat	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA	NA
(4) Tidal Marsh Channel Stability	NA	NA
(4) Tidal Marsh Stream Geomorphology	NA	NA
(3) Tidal Marsh In-stream Habitat	NA	NA
(2) Intertidal Zone Habitat	NA	NA

Stream Site Name UT2 Reach 2	Date of Evaluation	11/19/18
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Intermittent

Function Class Rating Summary	All Streams	Intermitter
(1) Hydrology	MEDIUM	MEDIUM
(2) Baseflow	HIGH	HIGH
(2) Flood Flow	MEDIUM	MEDIUM
(3) Streamside Area Attenuation	LOW	LOW
(4) Floodplain Access	LOW	LOW
(4) Wooded Riparian Buffer	LOW	LOW
(4) Microtopography	NA	NA
(3) Stream Stability	HIGH	HIGH
(4) Channel Stability	MEDIUM	MEDIUM
(4) Sediment Transport	HIGH	HIGH
(4) Stream Geomorphology	HIGH	HIGH
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	HIGH	HIGH
(2) Streamside Area Vegetation	LOW	LOW
(3) Upland Pollutant Filtration	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Indicators of Stressors	YES	YES
(2) Aquatic Life Tolerance	LOW	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	MEDIUM	MEDIUM
(2) In-stream Habitat	HIGH	HIGH
(3) Baseflow	HIGH	HIGH
(3) Substrate	HIGH	HIGH
(3) Stream Stability	MEDIUM	MEDIUM
(3) In-stream Habitat	HIGH	HIGH
(2) Stream-side Habitat	LOW	LOW
(3) Stream-side Habitat	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA	NA
(4) Tidal Marsh Channel Stability	NA	NA
(4) Tidal Marsh Stream Geomorphology	NA	NA
(3) Tidal Marsh In-stream Habitat	NA	NA
(2) Intertidal Zone Habitat	NA	NA

Stream Site Name UT2 Reach 3	Date of Evaluation	11/19/18
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	LOW	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	YES	
	LOW	
(2) Aquatic Life Tolerance	NA	
(2) Intertidal Zone Filtration	MEDIUM	
(1) Habitat		
(2) In-stream Habitat	HIGH HIGH	
(3) Baseflow(3) Substrate	HIGH	
(3) Stream Stability	LOW	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

Stream Site Name UT2 Reach 4	Date of Evaluation	11/19/18
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N) Presence of regulatory considerations (Y/N)		NO NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	MEDIUM	
(2) Baseflow	HIGH	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	MEDIUM	
(2) In-stream Habitat	HIGH	
(2) In stream nabilat (3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	MEDIUM	

Stream Site Name UT2 Reach 5	Date of Evaluation	11/19/18
Stream Category Pb2	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	LOW	
(2) Baseflow	MEDIUM	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	MEDIUM	
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	MEDIUM	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	MEDIUM	
(2) Streamside Area Vegetation	LOW	
(2) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	YES	
	LOW	
(2) Aquatic Life Tolerance	NA	
(2) Intertidal Zone Filtration	MEDIUM	
(1) Habitat		
(2) In-stream Habitat	HIGH	
(3) Baseflow(3) Substrate	HIGH	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	LOW	

NC SAM Stream Rating Accompanies User Manual			
Stream Site Name UT2A R1	Date of Evaluation	11/19/18	3
Stream Category Pb1	Assessor Name/Organization		
	-		
Notes of Field Assessment Form (Y/N)		<u> </u>	/ES
Presence of regulatory considerations (Y/N)			NO
Additional stream information/supplementary measurements included (Y/N)			/ES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Inter	rmittent
	USACE/	NCDWR	
Function Class Rating Summary	All Streams	Intermittent	-
(1) Hydrology	MEDIUM	MEDIUM	-
(2) Baseflow	MEDIUM	MEDIUM	-
(2) Flood Flow	MEDIUM	MEDIUM	-
(3) Streamside Area Attenuation	LOW	LOW	_
(4) Floodplain Access	MEDIUM	MEDIUM	_
(4) Wooded Riparian Buffer	LOW	LOW	_
(4) Microtopography	NA	NA	_
(3) Stream Stability	HIGH	HIGH	_
(4) Channel Stability	MEDIUM	MEDIUM	_
(4) Sediment Transport	HIGH	HIGH	_
(4) Stream Geomorphology	HIGH	HIGH	_
(2) Stream/Intertidal Zone Interaction	NA	NA	_
(2) Longitudinal Tidal Flow	NA	NA	-
(2) Tidal Marsh Stream Stability	NA	NA	-
(3) Tidal Marsh Channel Stability	NA	NA	_
(3) Tidal Marsh Stream Geomorphology	NA	NA	_
(1) Water Quality	LOW	LOW	_
(2) Baseflow	MEDIUM	MEDIUM	_
(2) Streamside Area Vegetation	LOW	LOW	
(3) Upland Pollutant Filtration	LOW	LOW	_
(3) Thermoregulation	LOW	LOW	_
(2) Indicators of Stressors	YES	YES	_
(2) Aquatic Life Tolerance	LOW	NA	_
(2) Intertidal Zone Filtration	NA	NA	-

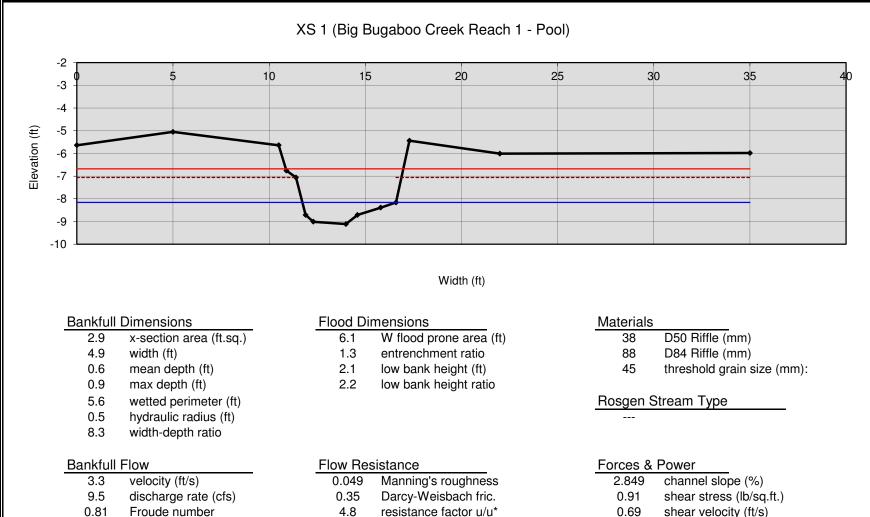
Overall	MEDIUM	MEDIUM
(2) Intertidal Zone Habitat	NA	NA
(3) Tidal Marsh In-stream Habitat	NA	NA
(4) Tidal Marsh Stream Geomorpholo	gy NA	NA
(4) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Stability	NA	NA
(3) Flow Restriction	NA	NA
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Thermoregulation	LOW	LOW
(3) Stream-side Habitat	LOW	LOW
(2) Stream-side Habitat	LOW	LOW
(3) In-stream Habitat	HIGH	HIGH
(3) Stream Stability	MEDIUM	MEDIUM
(3) Substrate	HIGH	HIGH
(3) Baseflow	MEDIUM	MEDIUM
(2) In-stream Habitat	HIGH	HIGH
(1) Habitat	MEDIUM	MEDIUM
(2) Intertidal Zone Filtration	NA	NA
(2) Aquatic Life Tolerance	LOW	NA
(2) multiplies of stressors	1123	115

Stream Site Name UT2A Reach 2	Date of Evaluation	11/19/18
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Intermittent

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	LOW	LOW
(2) Baseflow	HIGH	HIGH
(2) Flood Flow	LOW	LOW
(3) Streamside Area Attenuation	LOW	LOW
(4) Floodplain Access	LOW	LOW
(4) Wooded Riparian Buffer	LOW	LOW
(4) Microtopography	NA	NA
(3) Stream Stability	MEDIUM	MEDIUM
(4) Channel Stability	LOW	LOW
(4) Sediment Transport	HIGH	HIGH
(4) Stream Geomorphology	MEDIUM	MEDIUM
(2) Stream/Intertidal Zone Interaction	NA	NA
(2) Longitudinal Tidal Flow	NA	NA
(2) Tidal Marsh Stream Stability	NA	NA
(3) Tidal Marsh Channel Stability	NA	NA
(3) Tidal Marsh Stream Geomorphology	NA	NA
(1) Water Quality	LOW	LOW
(2) Baseflow	HIGH	HIGH
(2) Streamside Area Vegetation	LOW	LOW
(2) Site anside Area vegetation (3) Upland Pollutant Filtration	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Indicators of Stressors	YES	YES
(2) Aquatic Life Tolerance	LOW	NA
(2) Intertidal Zone Filtration	NA	NA
(1) Habitat	MEDIUM	MEDIUM
(2) In-stream Habitat	HIGH	HIGH
(3) Baseflow	HIGH	HIGH
(3) Substrate	HIGH	HIGH
(3) Stream Stability	LOW	LOW
(3) In-stream Habitat	HIGH	HIGH
(2) Stream-side Habitat	LOW	LOW
(3) Stream-side Habitat	LOW	LOW
(3) Thermoregulation	LOW	LOW
(2) Tidal Marsh In-stream Habitat	NA	NA
(3) Flow Restriction	NA	NA
(3) Tidal Marsh Stream Stability	NA	NA
(4) Tidal Marsh Channel Stability	NA	NA
(4) Tidal Marsh Stream Geomorphology	NA	NA
(3) Tidal Marsh In-stream Habitat	NA	NA
(2) Intertidal Zone Habitat	NA	NA
Overall	LOW	LOW

Stream Site Name UT2B	Date of Evaluation	11/19/18
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

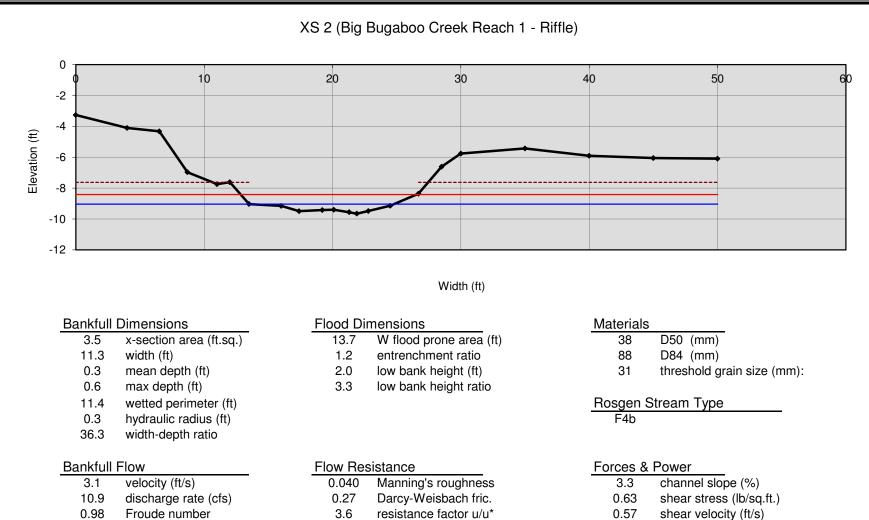
Function Class Rating Summary	All Streams	Intermitten
(1) Hydrology	MEDIUM	
(2) Baseflow	HIGH	
(2) Flood Flow	MEDIUM	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	MEDIUM	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	LOW	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	MEDIUM	
(2) In-stream Habitat	HIGH	
(3) Baseflow	HIGH	
(3) Substrate	HIGH	
(3) Stream Stability	MEDIUM	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	MEDIUM	


Stream Site Name UT3	Date of Evaluation	11/19/18
Stream Category Pb2	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		YES
Presence of regulatory considerations (Y/N)		NO
Additional stream information/supplementary measurements included (Y/N)		YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	LOW	
(2) Baseflow	HIGH	
(2) Flood Flow	LOW	
(3) Streamside Area Attenuation	LOW	
(4) Floodplain Access	LOW	
(4) Wooded Riparian Buffer	LOW	
(4) Microtopography	NA	
(3) Stream Stability	LOW	
(4) Channel Stability	LOW	
(4) Sediment Transport	MEDIUM	
(4) Stream Geomorphology	LOW	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	LOW	
(3) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	LOW	
(2) Indicators of Stressors	YES	
(2) Aquatic Life Tolerance	MEDIUM	
(2) Intertidal Zone Filtration	NA	
(1) Habitat	LOW	
(2) In-stream Habitat	MEDIUM	
(3) Baseflow	HIGH	
(3) Substrate	MEDIUM	
(3) Stream Stability	LOW	
(3) In-stream Habitat	MEDIUM	
(2) Stream-side Habitat	LOW	
(3) Stream-side Habitat	LOW	
(3) Thermoregulation	LOW	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat Overall	NA LOW	

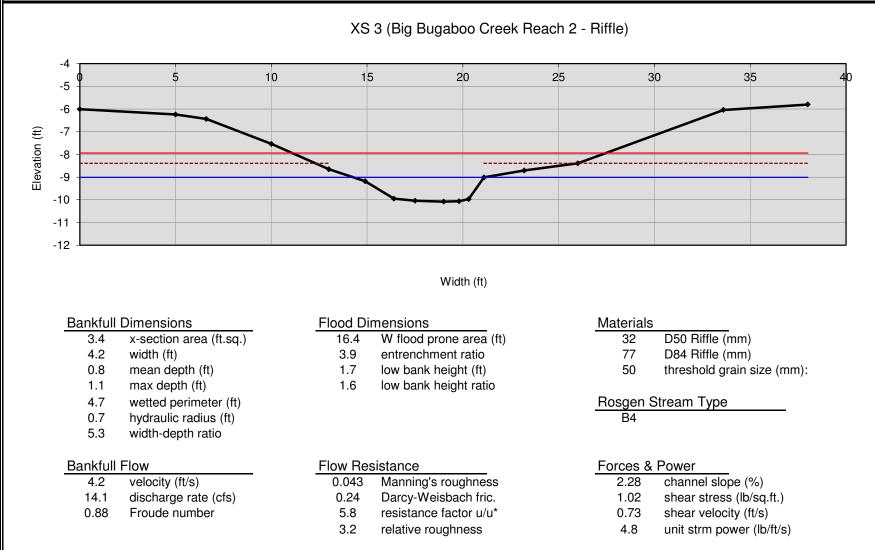
Stream Site Name UT4	Date of Evaluation	11/20/18
Stream Category Pb1	Assessor Name/Organization	C. Lanza
Notes of Field Assessment Form (Y/N)		NO
Presence of regulatory considerations (Y/N) Additional stream information/supplementary measurements included (Y/N)		NO YES
NC SAM feature type (perennial, intermittent, Tidal Marsh Stream)		Perennial

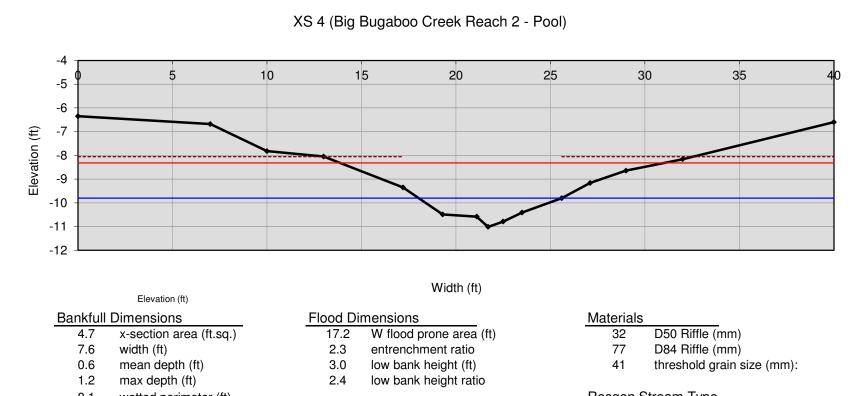
Function Class Rating Summary	USACE/ All Streams	NCDWR Intermitten
(1) Hydrology	HIGH	
(2) Baseflow	HIGH	
(2) Flood Flow	HIGH	
(3) Streamside Area Attenuation	MEDIUM	
(4) Floodplain Access	MEDIUM	
(4) Wooded Riparian Buffer	HIGH	
(4) Microtopography	NA	
(3) Stream Stability	HIGH	
(4) Channel Stability	HIGH	
(4) Sediment Transport	HIGH	
(4) Stream Geomorphology	HIGH	
(2) Stream/Intertidal Zone Interaction	NA	
(2) Longitudinal Tidal Flow	NA	
(2) Tidal Marsh Stream Stability	NA	
(3) Tidal Marsh Channel Stability	NA	
(3) Tidal Marsh Stream Geomorphology	NA	
(1) Water Quality	LOW	
(2) Baseflow	HIGH	
(2) Streamside Area Vegetation	MEDIUM	
(2) Upland Pollutant Filtration	LOW	
(3) Thermoregulation	HIGH	
(2) Indicators of Stressors	YES	
	LOW	
(2) Aquatic Life Tolerance	NA	
(2) Intertidal Zone Filtration (1) Habitat	HIGH	
(2) In-stream Habitat	HIGH	
(3) Baseflow(3) Substrate	HIGH	
(3) Stream Stability	HIGH	
(3) In-stream Habitat	HIGH	
(2) Stream-side Habitat	HIGH	
(3) Stream-side Habitat	HIGH	
(3) Thermoregulation	HIGH	
(2) Tidal Marsh In-stream Habitat	NA	
(3) Flow Restriction	NA	
(3) Tidal Marsh Stream Stability	NA	
(4) Tidal Marsh Channel Stability	NA	
(4) Tidal Marsh Stream Geomorphology	NA	
(3) Tidal Marsh In-stream Habitat	NA	
(2) Intertidal Zone Habitat	NA	
Overall	HIGH	


Appendix 2

0.81 Froude number

- 4.8 resistance factor u/u*
- relative roughness 2.0


- shear velocity (ft/s)
- unit strm power (lb/ft/s) 3.5



relative roughness

1.1

1.98 unit strm power (lb/ft/s)

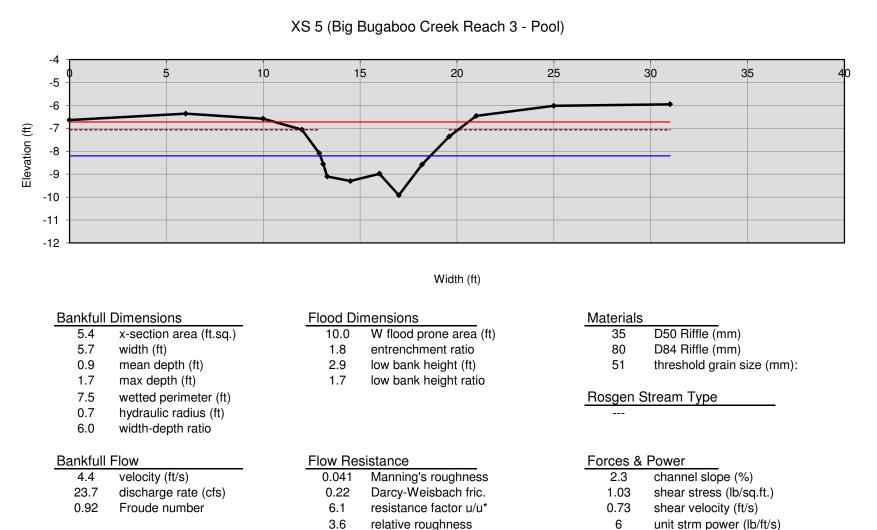
- wetted perimeter (ft) 8.1
- hydraulic radius (ft) 0.6
- width-depth ratio 12.3

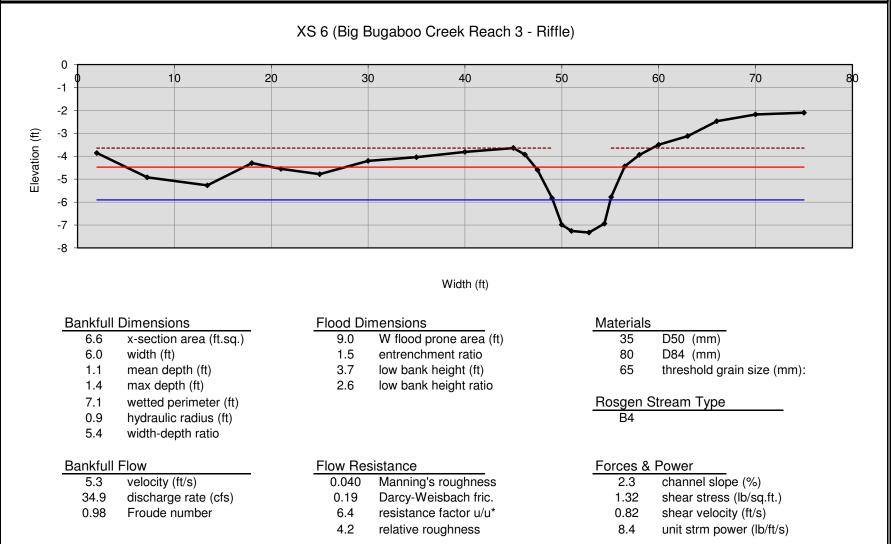
Bankfull Flow

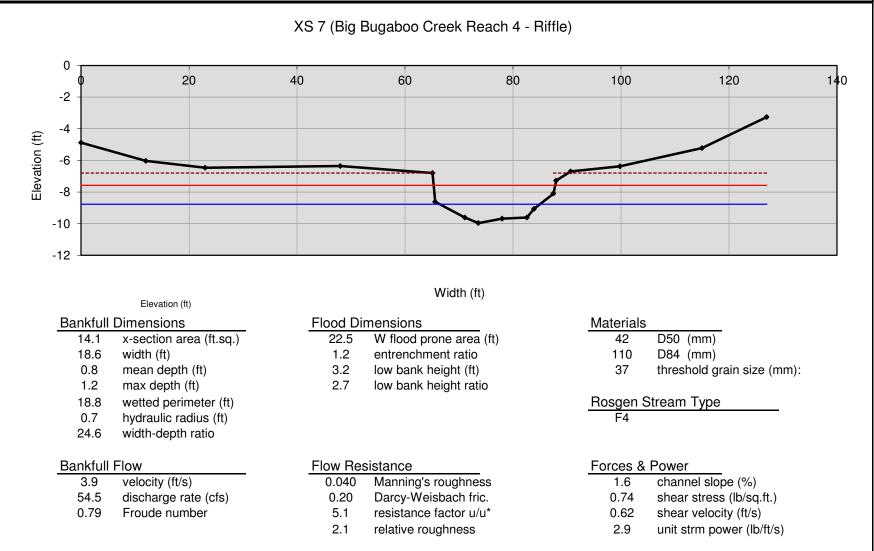
- velocity (ft/s) 3.6
- 16.9
- 0.84 Froude number

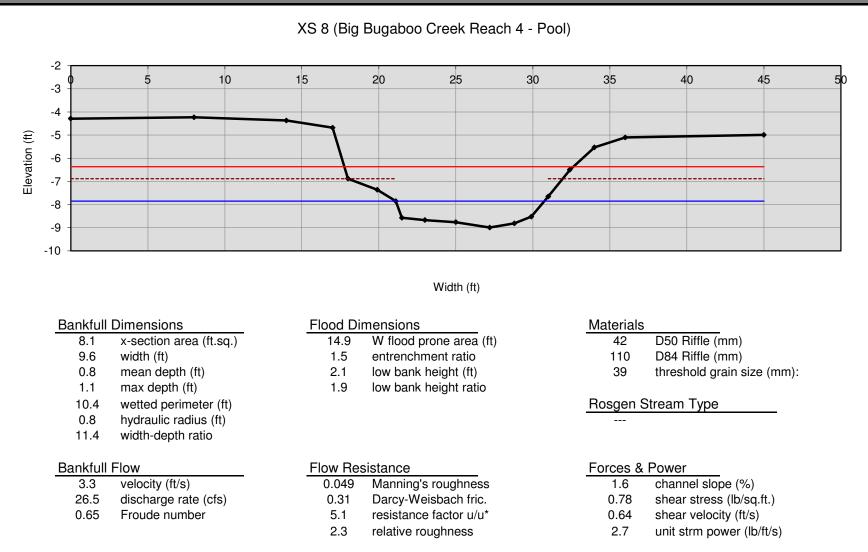
Flow Resistance

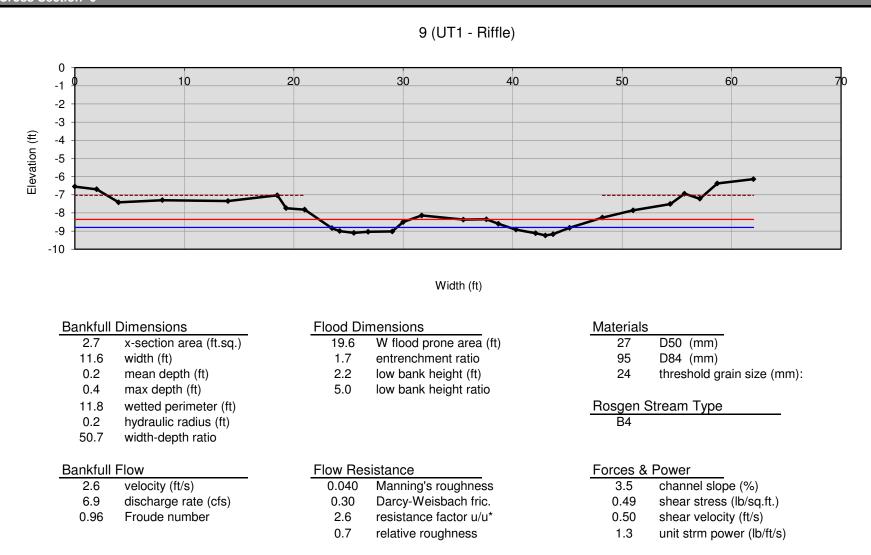
- 0.043 Manning's roughness
- Darcy-Weisbach fric. 0.26
- 5.5 resistance factor u/u*

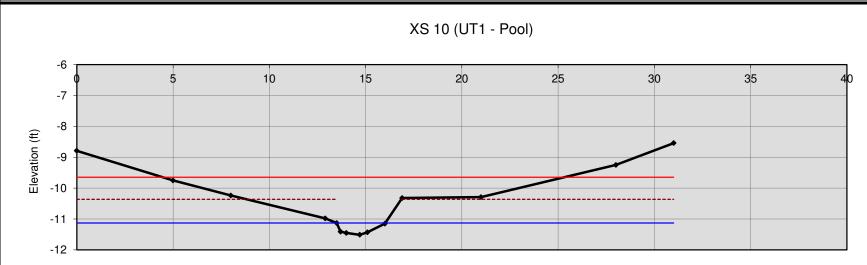

Rosgen Stream Type


Forces & Power


- 2.28 channel slope (%)
- shear stress (lb/sq.ft.) 0.82
- 0.65 shear velocity (ft/s)
- unit strm power (lb/ft/s) 3.2


- discharge rate (cfs)
- relative roughness 2.4




unit strm power (lb/ft/s) 6

Width (ft)

Bankfull Dimensions

- 0.6 x-section area (ft.sq.)
- 2.5 width (ft)
- 0.3 mean depth (ft)
- 0.4 max depth (ft)
- 2.7 wetted perimeter (ft)
- 0.2 hydraulic radius (ft)
- 9.9 width-depth ratio

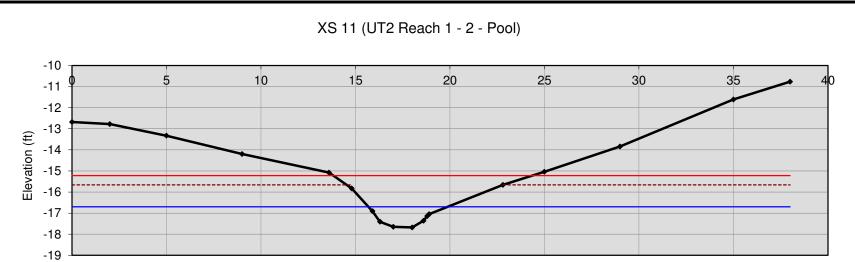
Bankfull Flow

- 2.7 velocity (ft/s)
- 1.7 discharge rate (cfs)
- 0.97 Froude number

- Flood Dimensions
 - 20.9 W flood prone area (ft)
 - 8.3 entrenchment ratio
 - 1.2 low bank height (ft)
 - 3.0 low bank height ratio

Flow Resistance

- 0.040 Manning's roughness
- 0.30 Darcy-Weisbach fric.
- 2.6 resistance factor u/u*
- 0.8 relative roughness


Materials

- 27 D50 Riffle (mm)
- 95 D84 Riffle (mm)
- 25 threshold grain size (mm):
- Rosgen Stream Type

Forces & Power

- 3.5 channel slope (%)
- 0.51 shear stress (lb/sq.ft.)
- 0.52 shear velocity (ft/s)
- 1.48 unit strm power (lb/ft/s)

Width (ft)

Elevation (ft) Bankfull Dimensions

- 2.6 x-section area (ft.sq.)
- 4.2 width (ft)
- 0.6 mean depth (ft)
- 1.0 max depth (ft)
- 4.8 wetted perimeter (ft)
- 0.5 hydraulic radius (ft)
- 6.9 width-depth ratio
- 0.9 widin-depin ratio

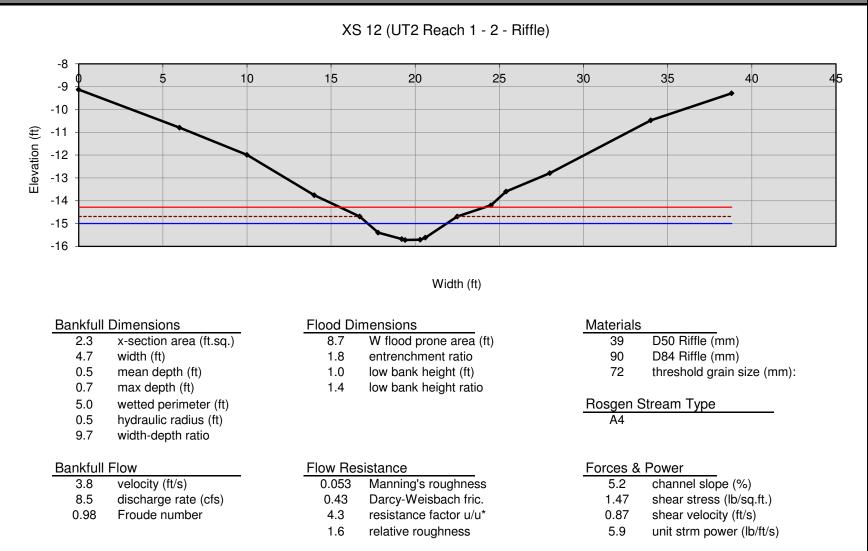
Bankfull Flow

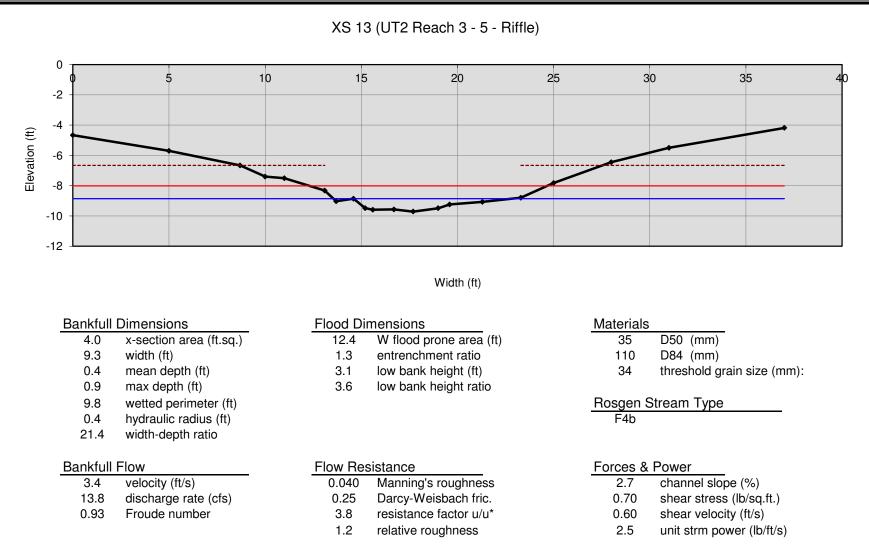
- 2.8 velocity (ft/s)
- 7.2 discharge rate (cfs)
- 0.68 Froude number

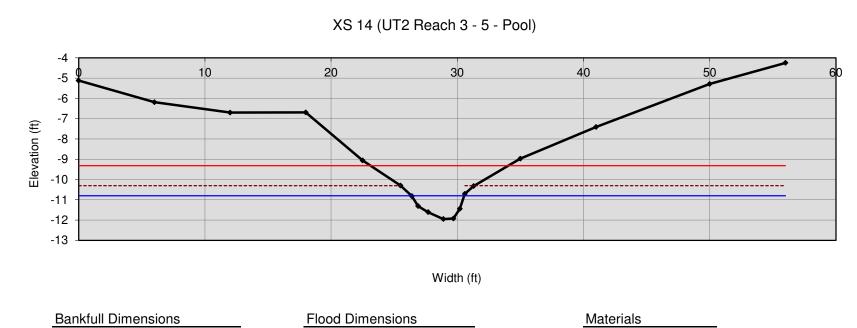
- Flood Dimensions
 - 10.6 W flood prone area (ft)
 - 2.5 entrenchment ratio
- 2.0 low bank height (ft)
- 2.1 low bank height ratio

Flow Resistance

- 0.049 Manning's roughness
- 0.34 Darcy-Weisbach fric.
- 4.8 resistance factor u/u*
- 2.1 relative roughness


Materials


- 39 D50 Riffle (mm)
- 90 D84 Riffle (mm)
- 33 threshold grain size (mm):
- Rosgen Stream Type



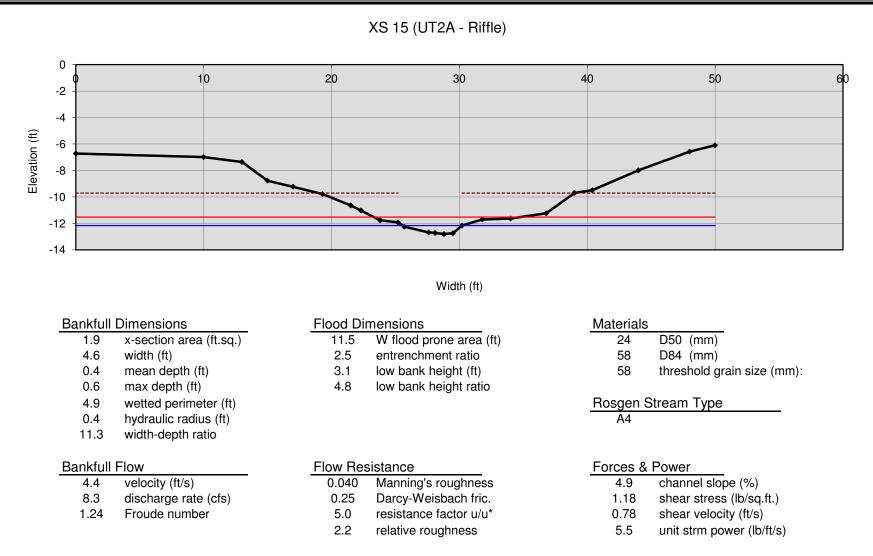
Forces & Power

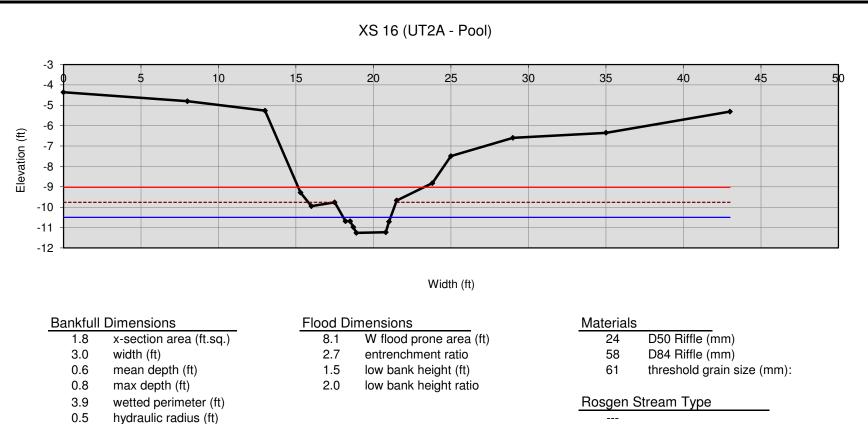
- 2 channel slope (%)
- 0.66 shear stress (lb/sq.ft.)
- 0.58 shear velocity (ft/s)
- 2.2 unit strm power (lb/ft/s)

- 3.3 x-section area (ft.sq.)
- 4.2 width (ft)
- 0.8 mean depth (ft)
- 1.2 max depth (ft)
- 5.1 wetted perimeter (ft)
- 0.7 hydraulic radius (ft)
- 5.3 width-depth ratio

Bankfull Flow

- 3.6 velocity (ft/s)
- 11.9 discharge rate (cfs)
- 0.79 Froude number


- 10.9 W flood prone area (ft)
- 2.6 entrenchment ratio
- 1.7 low bank height (ft)
 - 1.4 low bank height ratio
- Flow Resistance
 - 0.051 Manning's roughness
 - 0.35 Darcy-Weisbach fric.
 - 4.8 resistance factor u/u*
 - 2.2 relative roughness

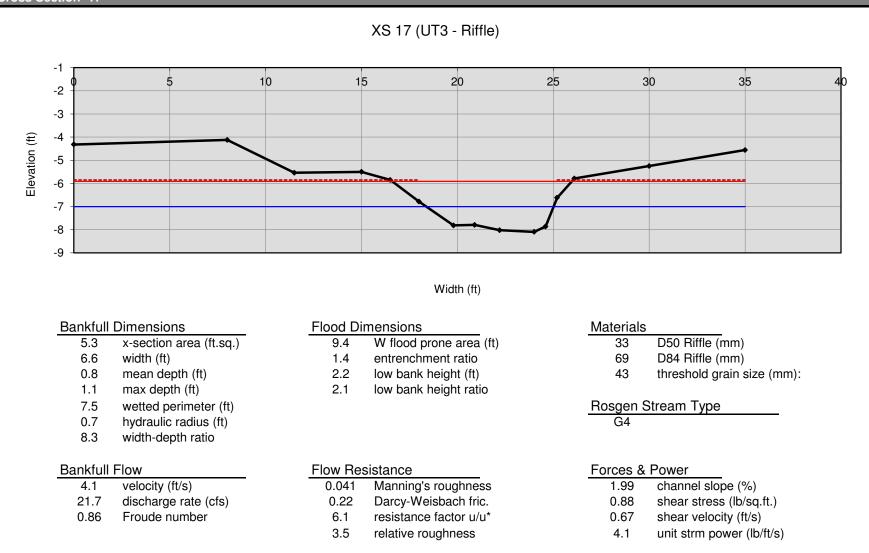

- 35 D50 Riffle (mm)
- 110 D84 Riffle (mm)
- 54 threshold grain size (mm):
- Rosgen Stream Type

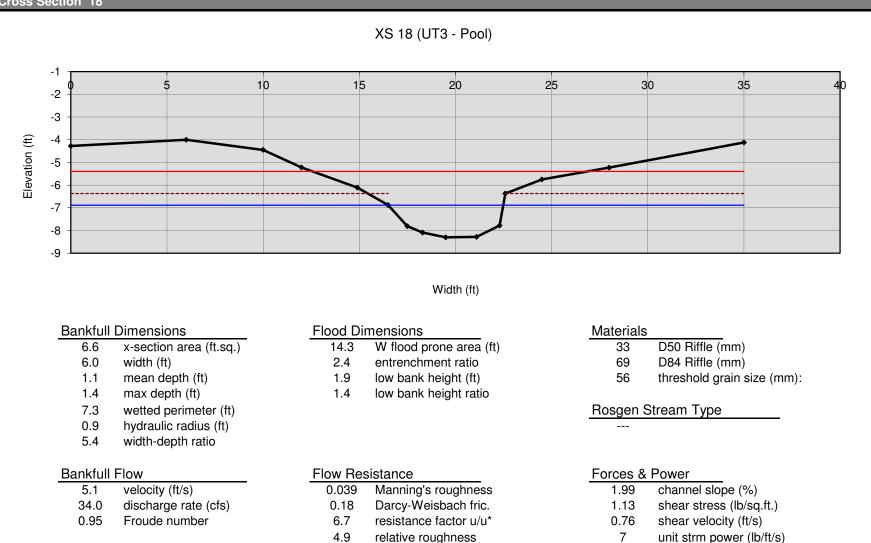
Forces & Power

- 2.7 channel slope (%)
- 1.10 shear stress (lb/sq.ft.)
- 0.75 shear velocity (ft/s)
- 4.8 unit strm power (lb/ft/s)

5.2 width-depth ratio

Bankfull Flow


- 4.4 velocity (ft/s)
- 7.8 discharge rate (cfs)
- 1.14 Froude number


Flow Resistance

- 0.042 Manning's roughness
- 0.27 Darcy-Weisbach fric.
- 5.5 resistance factor u/u*
- 3.1 relative roughness

Forces & Power

- 4.36 channel slope (%)
- 1.24 shear stress (lb/sq.ft.)
- 0.80 shear velocity (ft/s)
- 6.9 unit strm power (lb/ft/s)

Appendix 3

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Bug Headwaters Mitigation Si	te	City/County: Traphill/	Wilkes	Sampling Date: 11/19/2018
Applicant/Owner: Wildlands Engineering]		State: NC	Sampling Point: DP1 Wetland A
Investigator(s): C. Neaves		Section, Township, Range	e:	
Landform (hillside, terrace, etc.): Floodplai	n Lo	cal relief (concave, convex		Slope (%): 1
Subregion (LRR or MLRA): LRR P, MLRA 1			-80.981733	Datum:
Soil Map Unit Name: Fairview sandy clay lo			NWI classifica	
· · · · · · · · · · · · · · · · · · ·				
Are climatic / hydrologic conditions on the sit				explain in Remarks.)
Are Vegetation X, Soil X, or Hydro			Circumstances" present	
Are Vegetation, Soil, or Hydro	ologynaturally probl	ematic? (If needed, e	xplain any answers in Re	emarks.)
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point locat	ions, transects, im	portant features, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area		
Hydric Soil Present?	Yes X No	within a Wetland?	Yes X	No
Wetland Hydrology Present?	Yes X No			
Remarks: Above Normal Rainfall				
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)
Primary Indicators (minimum of one is requi	red; check all that apply)		Surface Soil Crac	cks (B6)
X Surface Water (A1)	True Aquatic Plants	(B14)	Sparsely Vegetat	ed Concave Surface (B8)
X High Water Table (A2)	Hydrogen Sulfide Oc		Drainage Pattern	s (B10)
X Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines	. ,
Water Marks (B1)	X Presence of Reduce		Dry-Season Wate	
Sediment Deposits (B2)		on in Tilled Soils (C6)	Crayfish Burrows	
Drift Deposits (B3)	Thin Muck Surface (e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Re	marks)	Stunted or Stress	
X Iron Deposits (B5)			Geomorphic Posi	
Inundation Visible on Aerial Imagery (B	7)		Shallow Aquitard	
X Water-Stained Leaves (B9)			Microtopographic	
Aquatic Fauna (B13)			FAC-Neutral Test	t (D5)
Field Observations:				
Surface Water Present? Yes X	No Depth (inch			
Water Table Present? Yes X	No Depth (inch			
Saturation Present? Yes X	No Depth (inch	es): 0 Wetland	I Hydrology Present?	Yes X No
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mo	Shitoring well, aerial priolos	s, previous inspections), in a	avalladie:	
Remarks:				
lionano.				

VEGETATION (Four Strata) - Use scientific names of plants.

Sampling Point: DP1 Wetland A

Tree Stratum (Plot size: 20)	Absolute Dominant	Indicator	Deminence Test werkeheet
<u>Tree Stratum</u> (Plot size: <u>30'</u>) 1. <i>Ilex opaca</i>	<u>% Cover</u> Species? 50 Yes	Status FACU	Dominance Test worksheet:
2. Acer rubrum	25 Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
3 4.			Total Number of Dominant Species Across All Strata: 2 (B)
5 6.			Percent of Dominant Species That Are OBL, FACW, or FAC: 50.0% (A/B)
7.			Prevalence Index worksheet:
	75 =Total Cover		Total % Cover of: Multiply by:
50% of total cover: 3	8 20% of total cover	: 15	OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15')			FACW species 0 x 2 = 0
1			FAC species 25 x 3 = 75
2			FACU species 50 x 4 = 200
3			UPL species 0 x 5 = 0
4			Column Totals: 75 (A) 275 (B)
5			Prevalence Index = B/A = 3.67
6			Hydrophytic Vegetation Indicators:
7			1 - Rapid Test for Hydrophytic Vegetation
8			2 - Dominance Test is >50%
9			3 - Prevalence Index is ≤3.0 ¹
50% of total cover:	=Total Cover 20% of total cover	:	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')			Problematic Hydrophytic Vegetation ¹ (Explain)
1			¹ Indicators of hydric soil and wetland hydrology must be
2.			present, unless disturbed or problematic.
3.			Definitions of Four Vegetation Strata:
4.			Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5			more in diameter at breast height (DBH), regardless of height.
7.			Sapling/Shrub – Woody plants, excluding vines, less
8.			than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9 10			Herb – All herbaceous (non-woody) plants, regardless
11			of size, and woody plants less than 3.28 ft tall.
50% of total cover:	=Total Cover 20% of total cover	:	Woody Vine – All woody vines greater than 3.28 ft in height.
Woody Vine Stratum (Plot size: 15')			
1.			
2.			
3.			
4.			
5.			
	=Total Cover		Hydrophytic Vegetation
50% of total cover:	20% of total cover	:	Present? Yes X No
Remarks: (Include photo numbers here or on a sepa Herbaceous species unknown due to season, grazir			

SOIL

Profile Desc	ription: (Describe t	to the dep	th needed to doc	ument ti	he indica	tor or co	onfirm the abse	ence of indi	cators.)		
Depth	Matrix		Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		R	emark	S
0-12	10YR 3/1	100					Loamy/Claye	ev			
·											
<u> </u>											
	oncentration, D=Depl	etion, RM⊧	Reduced Matrix, N	/IS=Mas	ked Sand	l Grains.	² Lo	cation: PL=F			
Hydric Soil I											Hydric Soils ³ :
Histosol	(A1)		Polyvalue Be	elow Sur	face (S8)	(MLRA	147, 148)	2 cm M	uck (A10)	(MLRA	A 147)
Histic Ep	ipedon (A2)		Thin Dark S	urface (S	69) (MLR	A 147, 14	18)	Coast F	rairie Red	ox (A1	6)
Black His	stic (A3)		Loamy Muck	ky Minera	al (F1) (N	ILRA 136	5)	(MLR	A 147, 148	3)	
Hydroge	n Sulfide (A4)		Loamy Gley	ed Matriz	x (F2)			Piedmo	nt Floodpla	ain So	ils (F19)
Stratified	Layers (A5)		Depleted Ma	trix (F3)				(MLR	A 136, 147	7)	
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Pa	rent Mater	ial (F2	1)
X Depleted	Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)			(outs	ide MLRA	127, 1	147, 148)
Thick Da	rk Surface (A12)	. ,	Redox Depre	essions	(F8)			Very Sh	allow Dark	< Surfa	ace (F22)
	ucky Mineral (S1)		Iron-Mangar		. ,	2) (LRR N	l.		Explain in I		. ,
	leyed Matrix (S4)		MLRA 130		(, 、	,		1		- /
	edox (S5)		Umbric Surfa	,		122, 136	5)	³ Indicators of	of hydroph	vtic ve	getation and
	Matrix (S6)		Piedmont Fl	•	<i>,</i> .	-				•	be present,
	face (S7)		Red Parent	•		<i>,</i> .			disturbed c		•
	. ,			Material	(121) (11		, 147, 140)	unicoo			
	.ayer (if observed):										
Type:							Ubuduia Cail	Dwa a a m40	Vee	v	No
Depth (in							Hydric Soil	Present?	Yes	Χ	No
Remarks:											

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Bug Headwaters Mitigation Site	9	City/County: Traphill/V	Nilkes	Sampling Date: 11/19/2018
Applicant/Owner: Wildlands Engineering			State: NC	Sampling Point: DP 2 Upland
Investigator(s): C. Neaves		Section, Township, Range		
Landform (hillside, terrace, etc.): side slope		cal relief (concave, convex		Slope (%): 2
Subregion (LRR or MLRA): LRR P, MLRA 13			-80.981924	Datum:
• · · · ·		Long.	NWI classifica	
Soil Map Unit Name: Fairview sandy clay loa				
Are climatic / hydrologic conditions on the site				explain in Remarks.)
Are Vegetation X, Soil X, or Hydrol			Circumstances" present	
Are Vegetation, Soil, or Hydrol	ogynaturally proble	ematic? (If needed, ex	xplain any answers in Re	emarks.)
SUMMARY OF FINDINGS – Attach	site map showing s	ampling point locat	ions, transects, im	portant features, etc.
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled Area		
	Yes No X	within a Wetland?	Yes	No <u>X</u>
	Yes No X			
Remarks:				
Above Normal Rainfall.				
HYDROLOGY				
			Sacandary Indicatora	(minimum of two required)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is require	od: chock all that apply)		Surface Soil Crac	(minimum of two required)
Surface Water (A1)	True Aquatic Plants ((B14)		ed Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Od		Drainage Patterns	
Saturation (A3)		es on Living Roots (C3)	Moss Trim Lines	
Water Marks (B1)	Presence of Reduced		Dry-Season Wate	
Sediment Deposits (B2)	Recent Iron Reductio	()	Crayfish Burrows	
Drift Deposits (B3)	Thin Muck Surface (0			e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Rer		Stunted or Stress	
Iron Deposits (B5)		naiks)	Geomorphic Posi	
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard	
Water-Stained Leaves (B9))		Microtopographic	. ,
Aquatic Fauna (B13)			FAC-Neutral Test	
				. (D3)
Field Observations: Surface Water Present? Yes	No X Depth (inche	20).		
Water Table Present? Yes	No X Depth (inche No X Depth (inche			
Saturation Present? Yes	No X Depth (inche		Hydrology Present?	Yes No X
(includes capillary fringe)			rigurology Fresent?	
Describe Recorded Data (stream gauge, mo	nitoring well periol photos	previous inspections) if a	available:	
beschoe needraed bata (stream gauge, mol	intoring weil, achai photos			
Remarks:				

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: DP 2 Upland

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Ilex opaca	6	Yes	FACU	Number of Dominant Species
2.				That Are OBL, FACW, or FAC: (A)
3 4.				Total Number of Dominant Species Across All Strata: 3 (B)
5.				Percent of Dominant Species
6 7.				That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet:
··	6	=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 3		of total cover:	2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Sapling/Shrub Stratum (Plot size: 15')				FACW species $0 x^2 = 0$
<u> </u>				FAC species $0 x 3 = 0$
2.				FACU species 106 x 4 = 424
3.				UPL species $0 \times 5 = 0$
4.				Column Totals: 106 (A) 424 (B)
5.				Prevalence Index = $B/A = 4.00$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9.				$3 - Prevalence Index is \leq 3.0^1$
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:		of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Cynodon dactylon	70	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Trifolium repens	20	Yes	FACU	present, unless disturbed or problematic.
3. Schedonorus arundinaceus	5	No	FACU	Definitions of Four Vegetation Strata:
4. Amaranthus spinosus	5	No	FACU	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of
6				height.
7				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	100	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 5		of total cover:	20	height.
Woody Vine Stratum (Plot size: 15')	<u> </u>		20	
1				
0				
4.				
5		Total Course		Hydrophytic
E0% of total acutory		=Total Cover		Vegetation Present? Yes No X
50% of total cover:		of total cover:		Present? Yes No X
Remarks: (Include photo numbers here or on a sepa				
Vegetation influenced by grazing and pasture manage	gement.			

Depth Matrix			Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rei	marks	
0-6	10YR 3/2	100					Loamy/Clay	ey			
6-12	10YR 6/8	100					Loamy/Clay	ev			
						·	_call, clay				
						·					
						<u> </u>					
						•					
	oncentration, D=Dep	letion, RM	Reduced Matrix, N	/IS=Mas	ked Sand	Grains.	² Lc		Pore Lining,		
Hydric Soil										atic Hydric Soils	
Histosol	()		Polyvalue Be		```	•			luck (A10) (N		
Histic E	pipedon (A2)		Thin Dark S	urface (S	59) (MLR	A 147, 14	18)	Coast	Prairie Redo	k (A16)	
Black Hi	stic (A3)		Loamy Muck	ky Miner	al (F1) (N	ILRA 136	5)	(MLF	RA 147, 148)		
Hydroge	n Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedm	ont Floodplai	n Soils (F19)	
Stratified	d Layers (A5)		Depleted Ma	atrix (F3)				(MLF	RA 136, 147)		
2 cm Mı	uck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Pa	arent Materia	l (F21)	
Deplete	d Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)			(out	side MLRA 1	27, 147, 148)	
Thick Da	ark Surface (A12)		Redox Depre	essions	(F8)			Very S	hallow Dark	Surface (F22)	
Sandy N	lucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12	2) (LRR N	I,	Other	Explain in Re	emarks)	
Sandy G	leyed Matrix (S4)		MLRA 130	6)							
Sandy F	Redox (S5)		Umbric Surfa	ace (F13	B) (MLRA	122, 136	i)	³ Indicators	of hydrophyt	ic vegetation and	
Stripped	Matrix (S6)		Piedmont Fl	oodplair	Soils (F	19) (MLR	A 148)	wetlan	d hydrology r	nust be present,	
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127,	, 147, 148)	unless	disturbed or	problematic.	
Restrictive	Layer (if observed):										
Type:											
Depth (i	nches):						Hydric Soil	Present?	Yes	No X	

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

WETLAND DETERMINATION DATA SHEET – Eastern Mountains and Piedmont Region

Project/Site: Bug Headwaters Mitigation S	iite	City/County: Traphill/Wilkes Sampling Date: 11/19/2018			
Applicant/Owner: Wildlands Engineerir	ıg		State: NC	Sampling Point: DP 3 Wetland B, I, P, Q	
estigator(s): C. Neaves Section, Township, Range:					
Landform (hillside, terrace, etc.):	Lc	ocal relief (concave, convex,		Slope (%): 5	
Subregion (LRR or MLRA): LRR P, MLRA			80.984142	Datum:	
	130 Lat. 30.320039	Long	NWI classifica		
Soil Map Unit Name: Codorus Ioam		0 V			
Are climatic / hydrologic conditions on the s				explain in Remarks.)	
Are Vegetation X, Soil X, or Hydr			Circumstances" present	? Yes <u>No X</u>	
Are Vegetation, Soil, or Hyde	ology naturally prob	lematic? (If needed, ex	plain any answers in Re	emarks.)	
SUMMARY OF FINDINGS – Attac	h site map showing	sampling point locati	ons, transects, in	nportant features, etc.	
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area			
Hydric Soil Present?	Yes X No	within a Wetland?	Yes X	No	
Wetland Hydrology Present?	Yes X No				
Remarks:		L			
Above Normal Rainfall.	above confining coil lover	that intercepts trampled stra	om banka Matland wa	uld not ovict without stream	
Wetland formed by groundwater discharge incision or cattle impacts.	above comming son layer	that intersects trampied stre	am banks. Wetland wo	uid not exist without stream	
HYDROLOGY					
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)	
Primary Indicators (minimum of one is required; check all that apply)			Surface Soil Cracks (B6)		
X Surface Water (A1) True Aquatic Plants		(B14)	Sparsely Vegetated Concave Surface (B8)		
X High Water Table (A2) Hydrogen Sulfide Odor (C1			Drainage Patterns (B10)		
X Saturation (A3)		eres on Living Roots (C3)	Moss Trim Lines (B16)		
Water Marks (B1) Presence of Reduced Iron (C		ed Iron (C4)	Dry-Season Water Table (C2)		
		ion in Tilled Soils (C6)			
Drift Deposits (B3) Thin Muck Surface					
Algal Mat or Crust (B4)	Other (Explain in Re		Stunted or Stress		
Iron Deposits (B5)			Geomorphic Pos	ition (D2)	
Inundation Visible on Aerial Imagery (B7) Shallow Aquitard (D3)					
Water-Stained Leaves (B9) Microtopographic Relief (D4)				Relief (D4)	
Aquatic Fauna (B13) X FAC-Neutral Test (D5)			t (D5)		
Field Observations:					
Surface Water Present? Yes X	No Depth (inch	nes): 0			
Water Table Present? Yes X	No Depth (inch	nes): 0			
Saturation Present? Yes X	No Depth (inch	nes): 0 Wetland	Hydrology Present?	Yes X No	
(includes capillary fringe)					
Describe Recorded Data (stream gauge, n	onitoring well, aerial photo	s, previous inspections), if a	vailable:		
Remarks:					
nemarks.					

Sampling Point: 3 Wetland B, I, I

Trace Objections (Distriction of Ool	Absolute	Dominant	Indicator	Demission Test worksheet
<u>Tree Stratum</u> (Plot size: <u>30'</u>) 1.	% Cover	Species?	Status	Dominance Test worksheet:
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
3 4				Total Number of Dominant Species Across All Strata: 1 (B)
5 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15')				FACW species 30 x 2 = 60
1				FAC species 0 x 3 = 0
2				FACU species 5 x 4 = 20
3				UPL species 0 x 5 = 0
4				Column Totals: 35 (A) 80 (B)
5				Prevalence Index = B/A = 2.29
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				X 3 - Prevalence Index is $\leq 3.0^1$
50% of total cover:		=Total Cover of total cover:		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Juncus effusus	30	Yes	FACW	¹ Indicators of hydric soil and wetland hydrology must be
2. Cynodon dactylon	5	No	FACU	present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5 6.				more in diameter at breast height (DBH), regardless of height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
····	35	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 18		of total cover:	7	height.
Woody Vine Stratum (Plot size: 15')	<u> </u>			
0				
3 4.				
5.				
····		=Total Cover		Hydrophytic
50% of total cover:		of total cover:		Vegetation Present? Yes X No
Remarks: (Include photo numbers here or on a sepa				
Vegetation influenced by grazing and pasture manag	ement.			

Depth	Matrix			Features	4					
(inches)	Color (moist)	%	Color (moist)	% Туре	e ¹ Loc ²	Texture	Remarks			
0-3	10YR 3/2	100				Loamy/Claye	у			
3-12	10YR 6/1	100				Loamy/Claye	y			
		·······								
¹ Type: C=C	oncentration, D=Depl	etion, RM	=Reduced Matrix, M	S=Masked Sa	and Grains.	² Loc	ation: PL=Pore Lining, M=Matrix.			
Hydric Soil		,	,				Indicators for Problematic Hydric Soils ³			
Histosol	(A1)		Polyvalue Be	low Surface (58) (MLRA	147, 148)	2 cm Muck (A10) (MLRA 147)			
Histic E	pipedon (A2)		Thin Dark Su	urface (S9) (M	LRA 147, 14	48)	Coast Prairie Redox (A16)			
Black H	istic (A3)		Loamy Mucky	y Mineral (F1)	(MLRA 136	6)	(MLRA 147, 148)			
Hydroge	en Sulfide (A4)		Loamy Gleye	d Matrix (F2)			Piedmont Floodplain Soils (F19)			
Stratifie	d Layers (A5)		X Depleted Mat	trix (F3)			(MLRA 136, 147)			
2 cm Mı	uck (A10) (LRR N)		Redox Dark S	Surface (F6)			Red Parent Material (F21)			
	uck (A10) (LRR N) d Below Dark Surface	e (A11)		Surface (F6) rk Surface (F7)		Red Parent Material (F21) (outside MLRA 127, 147, 148)			
X Deplete		e (A11)		rk Surface (F7	`)		(outside MLRA 127, 147, 148)			
X Deplete Thick Da	d Below Dark Surface ark Surface (A12)	e (A11)	Depleted Dar Redox Depre	rk Surface (F7 essions (F8)		١,	(outside MLRA 127, 147, 148) Very Shallow Dark Surface (F22)			
X Depleter Thick Da Sandy M	d Below Dark Surface ark Surface (A12) /lucky Mineral (S1)	e (A11)	Depleted Dar Redox Depre	rk Surface (F7 essions (F8) ese Masses (F		١,	(outside MLRA 127, 147, 148)			
X Depleter Thick Da Sandy M Sandy C	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4)	e (A11)	Depleted Dar Redox Depre Iron-Mangane MLRA 136	rk Surface (F7 essions (F8) ese Masses (F	F12) (LRR N		(outside MLRA 127, 147, 148) Very Shallow Dark Surface (F22) Other (Explain in Remarks)			
X Deplete Thick Da Sandy M Sandy C Sandy F	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5)	e (A11)	Depleted Dar Redox Depre Iron-Mangane MLRA 136 Umbric Surfa	rk Surface (F7 essions (F8) ese Masses (I) ce (F13) (ML	F12) (LRR N RA 122, 136	5)	(outside MLRA 127, 147, 148) Very Shallow Dark Surface (F22) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and			
X Depleter Thick Di Sandy M Sandy C Sandy F Stripped	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4)	e (A11)	Depleted Dar Redox Depre Iron-Mangane MLRA 136 Umbric Surfa Piedmont Flo	rk Surface (F7 essions (F8) ese Masses (F	F12) (LRR M RA 122, 136 (F19) (MLR	6) A 148)	(outside MLRA 127, 147, 148) Very Shallow Dark Surface (F22) Other (Explain in Remarks)			
X Depleted Thick Da Sandy N Sandy C Sandy F Stripped Dark Su	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) I Matrix (S6)	e (A11)	Depleted Dar Redox Depre Iron-Mangane MLRA 136 Umbric Surfa Piedmont Flo	rk Surface (F7 essions (F8) ese Masses (I) uce (F13) (ML I podplain Soils	F12) (LRR M RA 122, 136 (F19) (MLR	6) A 148)	(outside MLRA 127, 147, 148) Very Shallow Dark Surface (F22) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present,			
X Depleted Thick Da Sandy N Sandy C Sandy F Stripped Dark Su	d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) I Matrix (S6) rface (S7)	e (A11)	Depleted Dar Redox Depre Iron-Mangane MLRA 136 Umbric Surfa Piedmont Flo	rk Surface (F7 essions (F8) ese Masses (I) uce (F13) (ML I podplain Soils	F12) (LRR M RA 122, 136 (F19) (MLR	6) A 148)	(outside MLRA 127, 147, 148) Very Shallow Dark Surface (F22) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present,			

Project/Site: Bug Headwaters Mitigation Site	е	City/County: Trap	ohill/Wilkes	Sampling Date: 11/19/2018
Applicant/Owner: Wildlands Engineering			State: NC	Sampling Point: DP4 Upland
Investigator(s): C. Neaves		Section, Township, R	ange:	
Landform (hillside, terrace, etc.): Floodplair	ו Lo	cal relief (concave, co	nvex, none): none	Slope (%): 2
Subregion (LRR or MLRA): LRR P, MLRA 1	36 Lat: 36.320666	Lo	ong: -80.984055	Datum:
Soil Map Unit Name: Codorus Ioam			NWI classifica	ation:
Are climatic / hydrologic conditions on the site	e typical for this time of ve	ar? Yes		explain in Remarks.)
Are Vegetation X, Soil , or Hydro			mal Circumstances" present	
Are Vegetation, Soil, or Hydro			ed, explain any answers in R	
SUMMARY OF FINDINGS – Attach				
				······································
Hydrophytic Vegetation Present? Hydric Soil Present?	Yes <u>No X</u> Yes No X	Is the Sampled Are within a Wetland?	ea Yes	No X
-	Yes No X	within a wetland?	165	No <u>X</u>
Remarks:				
Above Normal Rainfall.				
HYDROLOGY				
Wetland Hydrology Indicators:				(minimum of two required)
Primary Indicators (minimum of one is required			Surface Soil Crac	
Surface Water (A1)	True Aquatic Plants			ted Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Od		Drainage Pattern	
Saturation (A3)	Presence of Reduce	res on Living Roots (C3		
Water Marks (B1) Sediment Deposits (B2)		on in Tilled Soils (C6)	Dry-Season Wate Crayfish Burrows	
Drift Deposits (B3)	Thin Muck Surface (e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Re		Stunted or Stress	
Iron Deposits (B5)		inano)	Geomorphic Pos	
Inundation Visible on Aerial Imagery (B7	7)		Shallow Aquitard	
Water-Stained Leaves (B9)	/		Microtopographic	· · /
Aquatic Fauna (B13)			FAC-Neutral Tes	
Field Observations:				. ,
Surface Water Present? Yes	No X Depth (inch	es):		
Water Table Present? Yes	No X Depth (inch			
Saturation Present? Yes	No X Depth (inche	es): Wet	land Hydrology Present?	Yes No X
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos	s, previous inspections), if available:	
Remarks:				
Remarks.				

Sampling Point: DP4 Upland

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC: 0 (A)
3.				Total Number of Dominant
4.				Species Across All Strata: 1 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
/		Tatal Causer		
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 15')				FACW species 0 x 2 = 0
1				FAC species 0 x 3 = 0
2				FACU species 100 x 4 = 400
3				UPL species 0 x 5 = 0
4.				Column Totals: 100 (A) 400 (B)
5.				Prevalence Index = $B/A = 4.00$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Schedonorus arundinaceus	80	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Trifolium repens	10	No	FACU	present, unless disturbed or problematic.
3. Cynodon dactylon	5	No	FACU	Definitions of Four Vegetation Strata:
4. Eupatorium capillifolium	5	No	FACU	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
				of size, and woody plants less than 3.28 ft tall.
11	100	Tatal Causer		
		=Total Cover	~~	Woody Vine – All woody vines greater than 3.28 ft in height.
50% of total cover: 50	20%	of total cover:	20	
Woody Vine Stratum (Plot size: 15')				
1				
2				
3.				
4.				
5.				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes No X
Remarks: (Include photo numbers here or on a separ Vegetation influenced by grazing and pasture manag	,			
s ogotation initiation by grazing and pasture manag	cinont.			

Depth	Matrix		Redo	x Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-3	10YR 3/2	100					Loamy/Claye	y		
3-10	10YR 6/8	100					Loamy/Claye			
10-12	10YR 4/1	98	7.5YR 6/6		C	M	Loamy/Claye	Prominent redox concent	rations	
	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	MS=Mas	ked Sanc	Grains.		cation: PL=Pore Lining, M=Matrix.		
Hydric Soil								Indicators for Problematic Hydri		
Histosol	()		Polyvalue B		` '	•	· · ·	2 cm Muck (A10) (MLRA 147)		
	pipedon (A2)		Thin Dark S		, ,		· · · · · · ·	Coast Prairie Redox (A16)		
Black Hi	. ,		Loamy Mucl	-		ILRA 136	5)	(MLRA 147, 148)	•	
	n Sulfide (A4)			Loamy Gleyed Matrix (F2)				Piedmont Floodplain Soils (F1	9)	
	Layers (A5)		Depleted Ma	. ,				(MLRA 136, 147)		
	ick (A10) (LRR N)		Redox Dark		. ,		-	Red Parent Material (F21)		
	Below Dark Surface	€ (A11)	Depleted Da		. ,			(outside MLRA 127, 147, 148)		
	ark Surface (A12)		Redox Depr		. ,			Very Shallow Dark Surface (F	22)	
	lucky Mineral (S1)		Iron-Mangar		SSES (F12		N, -	Other (Explain in Remarks)		
	ileyed Matrix (S4)		MLRA 13	•		100 100		31		
	edox (S5)		Umbric Surf	`	<i>,</i> .		-	³ Indicators of hydrophytic vegetation		
	Matrix (S6)		Piedmont Fl	•	•	<i>,</i> .		wetland hydrology must be pre	-	
	rface (S7)		Red Parent	Material	(F21) (IVI	LRA 127	, 147, 148)	unless disturbed or problemat	IC.	
	Layer (if observed):									
Type:										
Depth (ir	nches):						Hydric Soil F	Present? Yes No	Х	

Project/Site: Bug Headwaters Mitigation Sit	e	City/County: Traphill/V	Vilkes	Sampling Date: 11/19/2018
Applicant/Owner: Wildlands Engineering			State: NC	Sampling Point: DP5 Wetland C, N
Investigator(s): C. Neaves		Section, Township, Range		
Landform (hillside, terrace, etc.): Floodplair		cal relief (concave, convex,		Slope (%): 1
Subregion (LRR or MLRA): LRR P, MLRA 1				Datum:
o () <u> </u>	30 Lat. <u>30.320313</u>	Long.	-80.984210	
Soil Map Unit Name: Codorus Ioam			NWI classifica	
Are climatic / hydrologic conditions on the site				explain in Remarks.)
Are Vegetation X, Soil X, or Hydro	logy significantly dis	sturbed? Are "Normal (Circumstances" present	? Yes X No
Are Vegetation, Soil, or Hydro	logynaturally proble	ematic? (If needed, ex	xplain any answers in Re	emarks.)
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point locati	ions, transects, im	portant features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland?	Yes <u>X</u>	No
Remarks: Above Normal Rainfall.				
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)
Primary Indicators (minimum of one is requi	red; check all that apply)		Surface Soil Crac	cks (B6)
X Surface Water (A1)	True Aquatic Plants	(B14)	Sparsely Vegetat	ted Concave Surface (B8)
X High Water Table (A2)	Hydrogen Sulfide Od	dor (C1)	Drainage Pattern	s (B10)
X Saturation (A3)	Oxidized Rhizospher	res on Living Roots (C3)	Moss Trim Lines	(B16)
Water Marks (B1)	X Presence of Reduce	d Iron (C4)	Dry-Season Wate	er Table (C2)
Sediment Deposits (B2)	Recent Iron Reduction	on in Tilled Soils (C6)	Crayfish Burrows	(C8)
Drift Deposits (B3)	Thin Muck Surface (C7)	Saturation Visible	e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Rei	marks)	Stunted or Stress	sed Plants (D1)
X Iron Deposits (B5)			Geomorphic Posi	ition (D2)
Inundation Visible on Aerial Imagery (B	7)		Shallow Aquitard	(D3)
Water-Stained Leaves (B9)			Microtopographic	Relief (D4)
Aquatic Fauna (B13)			X FAC-Neutral Tes	t (D5)
Field Observations:				
Surface Water Present? Yes X	No Depth (inche	es): 0		
Water Table Present? Yes X	No Depth (inche	es): 0		
Saturation Present? Yes X	No Depth (inch	es): 0 Wetland	Hydrology Present?	Yes X No
(includes capillary fringe)				
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos	s, previous inspections), if a	available:	
Remarks:				

Sampling Point: P5 Wetland C,

Tree Stratum (Plot size:)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	78 OUVEI	Opecies :	Olalus	Number of Dominant Species
2.				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant
4 5				Species Across All Strata: 1 (B)
6				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
	:	=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size:)				FACW species 50 x 2 = 100
1				FAC species <u>5</u> x 3 = <u>15</u>
2				FACU species 10 x 4 = 40
3				UPL species 0 x 5 = 0
4				Column Totals: 65 (A) 155 (B)
5				Prevalence Index = B/A = 2.38
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				X 3 - Prevalence Index is $\leq 3.0^{1}$
50% of total cover:		=Total Cover of total cover:		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Herb Stratum (Plot size:)	2078			Problematic Hydrophytic Vegetation ¹ (Explain)
1. Juncus effusus	50	Yes	FACW	
2. Trifolium repens	5	No	FACU	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
3. Cynodon dactylon	5	No	FACU	Definitions of Four Vegetation Strata:
4. Unknown carex	5	No	FAC	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
		-Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 33	320%	of total cover:	13	height.
Woody Vine Stratum (Plot size:)				
1				
2				
3				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a sepa				
Vegetation influenced by grazing and pasture manag	ement.			

SOIL

Depth	Matrix		Redo	x Featu	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks		
0-12	10YR 3/1	98	7.5YR 4/6	2	С	PL/M	Loamy/Cla	iyey	Prominent r	edox concentrations	
						·		·			
						·		·			
Type: C=C	oncentration, D=Depl	etion, RN	-Reduced Matrix, N	/IS=Mas	ked Sanc	d Grains.	² L	ocation:	PL=Pore Linir	ng, M=Matrix.	
Hydric Soil	Indicators:							Indica	tors for Probl	ematic Hydric Soil	
Histosol	(A1)		Polyvalue B	elow Su	face (S8)	(MLRA 1	147, 148)	2	cm Muck (A10) (MLRA 147)	
Histic E	oipedon (A2)		Thin Dark S	urface (S	69) (MLR	A 147, 14	8)	C	oast Prairie Re	dox (A16)	
Black Hi	istic (A3)		Loamy Mucl	y Miner	al (F1) (N	ILRA 136)		(MLRA 147, 14	48)	
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Pi	edmont Floodp	plain Soils (F19)	
Stratified	d Layers (A5)		Depleted Ma	trix (F3)	1				(MLRA 136, 14	47)	
2 cm Mu	uck (A10) (LRR N)		X Redox Dark	Surface	(F6)			R	ed Parent Mate	erial (F21)	
Deplete	d Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)		(outside MLRA 127, 147, 148)				
Thick Da	ark Surface (A12)		Redox Depr	essions	(F8)			V	ery Shallow Da	rk Surface (F22)	
Sandy N	lucky Mineral (S1)		Iron-Mangar	ron-Manganese Masses (F12) (LRR N,					Other (Explain in Remarks)		
Sandy G	aleyed Matrix (S4)		MLRA 13	5)							
 Sandy F	Redox (S5)		Umbric Surf	ace (F13	B) (MLRA	122, 136)	³ Indica	ators of hydrop	hytic vegetation and	
Stripped	Matrix (S6)		Piedmont Fl	oodplair	Soils (F	19) (MLR	A 148)	W	etland hydrolog	y must be present,	
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127,	147, 148)	ur	nless disturbed	or problematic.	
Restrictive	Layer (if observed):										
Type:											
Dopth (i	nches):						Hydric So	il Preser	t? Yes	X No	

Project/Site: Bug Headwaters Mitigation	Site	City/County: Traphill/W	likes	Sampling Date: 11/19/18
Applicant/Owner: Wildlands Engineer	ing		State: NC	Sampling Point: DP6 Wetland D
Investigator(s): C. Neaves		Section, Township, Range		
Landform (hillside, terrace, etc.): Head o	f Drain	ocal relief (concave, convex,		Slope (%): 3
Subregion (LRR or MLRA): LRR P, MLRA		Long	80.981386	Datum:
Soil Map Unit Name: Fairview sandy clay			NWI classific	
Are climatic / hydrologic conditions on the	site typical for this time of ye	ear? Yes	No X (If no,	explain in Remarks.)
Are Vegetation X, Soil X, or Hyd	drologysignificantly d	isturbed? Are "Normal C	Circumstances" presen	t? Yes X No
Are Vegetation, Soil, or Hyd	drology naturally prob	lematic? (If needed, ex	plain any answers in R	emarks.)
SUMMARY OF FINDINGS – Attac	ch site map showing	sampling point locati	ons, transects, in	nportant features, etc.
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area		
Hydric Soil Present?	Yes X No	within a Wetland?	Yes X	No
Wetland Hydrology Present?	Yes X No			
Remarks: Above Normal Rainfall.				
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)
Primary Indicators (minimum of one is rec	quired; check all that apply)		Surface Soil Cra	cks (B6)
X Surface Water (A1)	True Aquatic Plants	(B14)	Sparsely Vegeta	ted Concave Surface (B8)
X High Water Table (A2)	Hydrogen Sulfide Od	dor (C1)	Drainage Patterr	ns (B10)
X Saturation (A3)	X Oxidized Rhizosphe	res on Living Roots (C3)	Moss Trim Lines	(B16)
Water Marks (B1)	Presence of Reduce	ed Iron (C4)	Dry-Season Wat	er Table (C2)
Sediment Deposits (B2)	Recent Iron Reducti	on in Tilled Soils (C6)	Crayfish Burrows	s (C8)
Drift Deposits (B3)	Thin Muck Surface ((C7)	Saturation Visibl	e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Re	emarks)	Stunted or Stres	sed Plants (D1)
X Iron Deposits (B5)			Geomorphic Pos	sition (D2)
Inundation Visible on Aerial Imagery	(B7)		Shallow Aquitarc	I (D3)
Water-Stained Leaves (B9)			Microtopographic	c Relief (D4)
Aquatic Fauna (B13)			FAC-Neutral Tes	st (D5)
Field Observations:				
Surface Water Present? Yes X	No Depth (inch	nes): 0		
Water Table Present? Yes X	No Depth (inch	nes): 0		
Saturation Present? Yes X	No Depth (inch	nes): 0 Wetland	Hydrology Present?	Yes X No
(includes capillary fringe)				
Describe Recorded Data (stream gauge,	monitoring well, aerial photo:	s, previous inspections), if a	vailable:	
Remarks:				
nomans.				

Sampling Point: DP6 Wetland D

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: (A)
3				Total Number of Dominant Species Across All Strata: <u>3</u> (B)
5 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 66.7% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15')				FACW species 0 x 2 = 0
1.				FAC species 25 x 3 = 75
2.				FACU species $15 \times 4 = 60$
3.				UPL species 0 x 5 = 0
4.				Column Totals: 40 (A) 135 (B)
5.				Prevalence Index = $B/A = 3.38$
				Hydrophytic Vegetation Indicators:
o 7.				1 - Rapid Test for Hydrophytic Vegetation
0				X 2 - Dominance Test is >50%
o				3 - Prevalence Index is $\leq 3.0^{1}$
ð.		Tatal Causer		
50% of total cover:		=Total Cover of total cover:		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Unknown carex	15	Yes	FAC	¹ Indicators of hydric soil and wetland hydrology must be
2. Unknown eleocharis	10	Yes	FAC	present, unless disturbed or problematic.
3. Schedonorus arundinaceus	15	Yes	FACU	Definitions of Four Vegetation Strata:
4				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of height.
6				neight.
7				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9				(1 m) tall.
10 11.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	40	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 20		of total cover:	8	height.
Woody Vine Stratum (Plot size: 15')				
2.				
0				
1				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a separ	,			
Vegetation influenced by grazing and pasture manag	ement.			

Depth	Matrix		Redo	x Featur	es						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks			
0-12	10YR 4/1	95	7.5YR 6/8	5	<u> </u>	PL	Loamy/Cla	yey	Prominent r	edox co	ncentrations
						·					
	Dincentration, D=Depl	etion, RM	I=Reduced Matrix, N	//S=Mas	ked Sanc	Grains.	² L		PL=Pore Linin		
•	Indicators:								ors for Probl		-
Histosol			Polyvalue Be						m Muck (A10)		
	pipedon (A2)		Thin Dark S		<i>,</i> .		•		ast Prairie Re		6)
	stic (A3)		Loamy Muck	•	• • •	ILRA 136)	•	MLRA 147, 14		
Hydroge	n Sulfide (A4)		Loamy Gley		. ,				dmont Floodp		ils (F19)
	d Layers (A5)		X Depleted Ma	• •				•	MLRA 136, 14		
2 cm Mı	ıck (A10) (LRR N)		Redox Dark	Surface	(F6)			Rec	d Parent Mate	erial (F2	1)
Deplete	d Below Dark Surface	e (A11)	Depleted Da		. ,			-	outside MLR		
Thick Da	ark Surface (A12)		Redox Depre	essions	(F8)			Ver	y Shallow Da	rk Surfa	ice (F22)
Sandy N	lucky Mineral (S1)		Iron-Mangar	ese Ma	sses (F12	2) (LRR N	l,	Oth	er (Explain in	Remar	ks)
Sandy G	aleyed Matrix (S4)		MLRA 130	5)							
Sandy F	ledox (S5)		Umbric Surfa	ace (F13	B) (MLRA	122, 136)	³ Indicat	ors of hydropl	hytic ve	getation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F1	19) (MLR	A 148)	wet	land hydrolog	y must	be present,
Dark Su	rface (S7)		Red Parent	Vaterial	(F21) (M	LRA 127,	147, 148)	unle	ess disturbed	or prob	lematic.
Restrictive	Layer (if observed):										
Type:											
Depth (i	nches):						Hydric Soi	I Present	? Yes	Х	No

. ...

WEILAND DEIER	IMINATION DATA SHE	EI – Eastern Mountai	ns and Pleamon	t Region
Project/Site: Bug Headwaters Mitigation	Site	City/County: Traphill/Wi	lkes	Sampling Date: 11/19/18
Applicant/Owner: Wildlands Engineer	ring		State: NC	Sampling Point: DP7 Upland
Investigator(s): C. Neaves		Section, Township, Range:		
Landform (hillside, terrace, etc.): Head of	of Drain Lo	- ocal relief (concave, convex, r	none): convex	Slope (%): 3
Subregion (LRR or MLRA): LRR P, MLR	A 136 Lat: 36.323906	Long: -8	0.981206	Datum:
Soil Map Unit Name: Fairview sandy clay	/ loam		NWI classifica	ation:
Are climatic / hydrologic conditions on the		ear? Yes	No X (If no,	explain in Remarks.)
Are Vegetation X , Soil , or Hy			rcumstances" present	
Are Vegetation, Soil, or Hy			lain any answers in Re	
			-	,
SUMMARY OF FINDINGS – Atta	ch site map showing	sampling point locatio	ons, transects, in	portant features, etc.
Hydrophytic Vegetation Present?	Yes No	Is the Sampled Area		
Hydric Soil Present?	Yes X No	within a Wetland?	Yes	No X
Wetland Hydrology Present?	Yes No X			
HYDROLOGY				
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)
Primary Indicators (minimum of one is re-	quired; check all that apply)		Surface Soil Crac	
Surface Water (A1)	True Aquatic Plants	(B14)	Sparsely Vegetat	ed Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide O	dor (C1)	Drainage Pattern	s (B10)
Saturation (A3)	Oxidized Rhizosphe	eres on Living Roots (C3)	Moss Trim Lines	. ,
Water Marks (B1)	Presence of Reduce		Dry-Season Wate	
Sediment Deposits (B2)		ion in Tilled Soils (C6)	Crayfish Burrows	
Drift Deposits (B3)	Thin Muck Surface			e on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Re	emarks)	Stunted or Stress	
Iron Deposits (B5) Inundation Visible on Aerial Imagery	(P7)		Geomorphic Pos Shallow Aquitard	(),
Water-Stained Leaves (B9)	(87)		Microtopographic	
Aquatic Fauna (B13)			FAC-Neutral Tes	· · ·
Field Observations:				< <i>'</i> ,
Surface Water Present? Yes	No X Depth (inch	nes):		
Water Table Present? Yes	No X Depth (inch			
Saturation Present? Yes	No X Depth (inch		lydrology Present?	Yes No X
(includes capillary fringe)				

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Sampling Point: DP7 Upland

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC: 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: 1 (B)
5				Percent of Dominant Species
6.				That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		OBL species 0 $x 1 = 0$
Sapling/Shrub Stratum (Plot size: 15')				FACW species 0 x 2 = 0
1				FAC species $0 x 3 = 0$
2.				FACU species $100 \times 4 = 400$
3.				$\frac{1}{100} x = \frac{1}{100}$ UPL species 0 x 5 = 0
4.				Column Totals: 100 (A) 400 (B)
5				Prevalence Index = B/A = 4.00
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Schedonorus arundinaceus	90	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Cynodon dactylon	5	No	FACU	present, unless disturbed or problematic.
3. Amaranthus spinosus	5	No	FACU	Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Operitory (Obersha) Manaka alaysha ayahadi ayahadi ayahadi
				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft
8.				(1 m) tall.
9				
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
11				
		=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 50	20%	of total cover:	20	height.
Woody Vine Stratum (Plot size: 15')				
1				
2.				
3.				
4.				
5.				
		=Total Cover		Hydrophytic Vegetation
50% of total cover:		of total cover:		Present? Yes No
Remarks: (Include photo numbers here or on a sepa Vegetation influenced by grazing and pasture manage	,			
vegetation influenced by grazing and pasture manag	jement.			

Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-3	5YR 4/3	100					Loamy/Clay	/ey
3-12	10YR 4/1	80	5YR 4/6	20	С	PL	Loamy/Clay	vev Prominent redox concentrations
0-12	101114/1		51114/0				LUainy/Olay	
Type: C=C	oncentration, D=Dep	etion, RM	=Reduced Matrix, N	/IS=Mas	ked Sanc	d Grains.	² Lo	ocation: PL=Pore Lining, M=Matrix.
lydric Soil	Indicators:							Indicators for Problematic Hydric Soils
Histosol	(A1)		Polyvalue Be	elow Sur	face (S8)	(MLRA	147, 148)	2 cm Muck (A10) (MLRA 147)
Histic E	oipedon (A2)		Thin Dark S	urface (S	69) (MLR	A 147, 14	18)	Coast Prairie Redox (A16)
Black H	istic (A3)		Loamy Muck	ky Miner	al (F1) (N	ILRA 136	5)	(MLRA 147, 148)
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedmont Floodplain Soils (F19)
Stratifie	d Layers (A5)		X Depleted Ma	atrix (F3)				(MLRA 136, 147)
2 cm Mu	uck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Parent Material (F21)
Deplete	d Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)			(outside MLRA 127, 147, 148)
Thick Da	ark Surface (A12)		Redox Depre	essions	(F8)			Very Shallow Dark Surface (F22)
Sandy N	/lucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12	2) (LRR N	I,	Other (Explain in Remarks)
Sandy C	Bleyed Matrix (S4)		MLRA 130	5)				<u> </u>
Sandy F	Redox (S5)		Umbric Surfa	ace (F13	B) (MLRA	122, 136	i)	³ Indicators of hydrophytic vegetation and
	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	19) (MLR	A 148)	wetland hydrology must be present,
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless disturbed or problematic.
Restrictive	Layer (if observed):							
Type:								
Denth (i	nches):						Hydric Soil	Present? Yes X No

Project/Site: Bug Headwate	ers Mitigation Si	te		City/Count	y: Traphill/Wil	lkes	Sampling Date: 11	/19/18
Applicant/Owner: Wildla	nd Engineering					State: NC	Sampling Point: DP	3 Wetland E
Investigator(s): C. Neaves				Section, Town	ship. Range:			
Landform (hillside, terrace, et	rc.): Head of [Drain	Lo	ocal relief (conca	-		Slope (%):	2
Subregion (LRR or MLRA):	·		36.324881			0.982747	Datum:	
			30.324001		LUNG0			
Soil Map Unit Name: Fairvie						NWI classifie		
Are climatic / hydrologic conc			-		Yes		o, explain in Remarks.)	
Are Vegetation X, Soil					re "Normal Cir	rcumstances" presei	nt? Yes <u>X</u> No	ງ
Are Vegetation, Soil	, or Hydro	ology	naturally probl	lematic? (If	f needed, expl	ain any answers in I	Remarks.)	
SUMMARY OF FINDIN	GS – Attach	i site map	showing s	sampling po	oint locatio	ns, transects, i	mportant features	s, etc.
Hydrophytic Vegetation Pres	sent?	Yes X	No	Is the Samp	led Area			
Hydric Soil Present?		Yes X	No	within a We		Yes X	No	
Wetland Hydrology Present	?	Yes X	No					
Remarks: Above Normal Rainfall.								
HYDROLOGY								
Wetland Hydrology Indica							rs (minimum of two requ	<u>uired)</u>
Primary Indicators (minimur	<u>n of one is requi</u>					Surface Soil Cra		
X Surface Water (A1)			Aquatic Plants		-		ated Concave Surface	(B8)
X High Water Table (A2)			gen Sulfide Oo		. (00)	Drainage Patter		
X Saturation (A3)			•	res on Living Ro	oots (C3)	Moss Trim Line		
Water Marks (B1)			nce of Reduce	. ,	- (00)	Dry-Season Wa		
Sediment Deposits (B2)				on in Tilled Soils	s (Cb)	Crayfish Burrow		` O`
Drift Deposits (B3)			/luck Surface (-		ble on Aerial Imagery (C	(9)
Algal Mat or Crust (B4)		Other	(Explain in Re	marks)	-		ssed Plants (D1)	
Iron Deposits (B5)	rial Imagan (D	7)			-	Geomorphic Po	· · ·	
Inundation Visible on A Water-Stained Leaves (/)			-	Shallow Aquitar		
Aquatic Fauna (B13)	D9)				-	Microtopograph		
						X FAC-Neutral Te	st (D5)	
Field Observations:	Vee V	No	Danth (inch	() ()				
Surface Water Present? Water Table Present?	Yes <u>X</u> Yes X	No	Depth (inch	·				
Saturation Present?	Yes X	No No	Depth (inch Depth (inch		Wetland H	ydrology Present?	Yes X No	-
(includes capillary fringe)		NO	Deptil (incli	<u> </u>	wettand fi	yurology i resenti		·
Describe Recorded Data (st	ream dauge, mo	onitorina we	II. aerial photos	s, previous insp	ections), if ava	ailable:		
		g	.,	-,	,,			
Remarks:								

Sampling Point: DP8 Wetland E

	Absolute	Dominant	Indicator	Deminent Test worksheet
<u>Tree Stratum</u> (Plot size: <u>30'</u>) 1.	% Cover	Species?	Status	Dominance Test worksheet:
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3 4.				Total Number of Dominant Species Across All Strata: 2 (B)
5				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
	:	=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 15 x 1 = 15
Sapling/Shrub Stratum (Plot size: 15')				FACW species <u>5</u> x 2 = <u>10</u>
1				FAC species 25 x 3 =75
2				FACU species <u>10</u> x 4 = <u>40</u>
3				UPL species $0 x 5 = 0$
4				Column Totals: <u>55</u> (A) <u>140</u> (B)
5				Prevalence Index = B/A = 2.55
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				X 3 - Prevalence Index is $\leq 3.0^{1}$
50% of total cover:		=Total Cover of total cover:		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Unknown carex	25	Yes	FAC	¹ Indicators of hydric soil and wetland hydrology must be
2. Leersia oryzoides	15	Yes	OBL	present, unless disturbed or problematic.
3. Schedonorus arundinaceus	10	No	FACU	Definitions of Four Vegetation Strata:
4. Juncus effusus	5	No	FACW	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
	55	=Total Cover		Woody Vine - All woody vines greater than 3.28 ft in
50% of total cover: 28	20%	of total cover:	11	height.
Woody Vine Stratum (Plot size: 15')				
1.				
2.				
3				
4				
5				Hydrophytic
	:	=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a separ	ate sheet.)			
Vegetation influenced by grazing and pasture manage				

Depth	Matrix	Redo	x Features	S			
(inches) Color (r	noist) %	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-12 5Y 4	/1 80	2.5YR 4/6	20	С	M	Loamy/Clay	ey Prominent redox concentrations
			·				
¹ Type: C=Concentration	, D=Depletion, RM	I=Reduced Matrix, I	MS=Maske	ed Sanc	Grains.	²Lo	cation: PL=Pore Lining, M=Matrix.
Hydric Soil Indicators:							Indicators for Problematic Hydric Soils ³
Histosol (A1)		Polyvalue B		• •	•		2 cm Muck (A10) (MLRA 147)
Histic Epipedon (A2)		Thin Dark S		<i>,</i> .		-	Coast Prairie Redox (A16)
Black Histic (A3)		Loamy Muc	ky Mineral	(F1) (M	LRA 136	5)	(MLRA 147, 148)
Hydrogen Sulfide (A	4)	Loamy Gley	ed Matrix	(F2)			Piedmont Floodplain Soils (F19)
Stratified Layers (A5)	X Depleted Ma	atrix (F3)				(MLRA 136, 147)
2 cm Muck (A10) (LF	RR N)	Redox Dark	Surface (I	F6)			Red Parent Material (F21)
Depleted Below Dark	Surface (A11)	Depleted Da	ark Surface	e (F7)			(outside MLRA 127, 147, 148)
Thick Dark Surface (A12)	Redox Depr	essions (F	8)			Very Shallow Dark Surface (F22)
	ll (S1)	Iron-Mangai	nese Mass	ses (F12	!) (LRR N	١,	Other (Explain in Remarks)
Sandy Mucky Minera		MLRA 13	6)				
Sandy Mucky Minera	(S4)	MLRA IS	•,				
	(S4)	Umbric Surf	,	(MLRA	122, 136	5)	³ Indicators of hydrophytic vegetation and
Sandy Gleyed Matrix	(S4)		, ace (F13)	•			³ Indicators of hydrophytic vegetation and wetland hydrology must be present,
Sandy Gleyed Matrix Sandy Redox (S5)	(S4)	Umbric Surf	ace (F13) oodplain S	Soils (F1	9) (MLR	A 148)	
Sandy Gleyed Matrix Sandy Redox (S5) Stripped Matrix (S6)		Umbric Surf	ace (F13) oodplain S	Soils (F1	9) (MLR	A 148)	wetland hydrology must be present,
Sandy Gleyed Matrix Sandy Redox (S5) Stripped Matrix (S6) Dark Surface (S7)		Umbric Surf	ace (F13) oodplain S	Soils (F1	9) (MLR	A 148)	wetland hydrology must be present,

Project/Site: Bug Headwaters Mitigation Sit	te City/	County: Traphill/Wilkes	Sampling Date: 11/19/18
Applicant/Owner: Wildlands Engineering		State: NC	Sampling Point: DP9 Wetland F-G
Investigator(s): C. Neaves		Township, Range:	
Landform (hillside, terrace, etc.): Floodplain		(concave, convex, none): concave	Slope (%): 1
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Subregion (LRR or MLRA): LRR P, MLRA 1	<u>36</u> Lat: <u>36.322441</u>	Long: -80.984769	Datum:
Soil Map Unit Name: Fairview sandy loam		NWI classific	cation:
Are climatic / hydrologic conditions on the sit	e typical for this time of year?	Yes No X (If no	, explain in Remarks.)
Are Vegetation X , Soil X , or Hydro	logysignificantly disturbed?	Are "Normal Circumstances" preser	nt? Yes X No
Are Vegetation, Soil, or Hydro	logy naturally problematic?	(If needed, explain any answers in F	Remarks.)
SUMMARY OF FINDINGS – Attach	site map showing samplin	g point locations, transects, in	mportant features, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No within	Sampled Area a Wetland? YesX_	No
Remarks:	Yes X No		
Above Normal Rainfall.			
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicator	s (minimum of two required)
Primary Indicators (minimum of one is requi	red; check all that apply)	Surface Soil Cra	acks (B6)
X Surface Water (A1)	True Aquatic Plants (B14)		ated Concave Surface (B8)
X High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patter	
X Saturation (A3)	Oxidized Rhizospheres on Livi		()
Water Marks (B1)	Presence of Reduced Iron (C4	·	
Sediment Deposits (B2)	Recent Iron Reduction in Tilled		
Drift Deposits (B3)	Thin Muck Surface (C7)		le on Aerial Imagery (C9)
Algal Mat or Crust (B4)	Other (Explain in Remarks)		ssed Plants (D1)
X Iron Deposits (B5)		Geomorphic Po	
Inundation Visible on Aerial Imagery (B	()	Shallow Aquitan	
Water-Stained Leaves (B9)		Microtopographi	
Aquatic Fauna (B13)		X FAC-Neutral Te	st (D5)
Field Observations:			
Surface Water Present? Yes X	No Depth (inches):0	—	
Water Table Present? Yes X	No Depth (inches):0		
Saturation Present? Yes X	No Depth (inches):0	Wetland Hydrology Present?	Yes X No
(includes capillary fringe)			
Describe Recorded Data (stream gauge, mo	initoring well, aerial photos, previous	s inspections), if available:	
Remarks:			
nemarks.			

Sampling Point:)P9 Wetland F-(

<u>Tree Stratum</u> (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	78 COVEI	Species :	Status	Number of Dominant Species
2.				That Are OBL, FACW, or FAC:(A)
3				Total Number of Dominant Species Across All Strata: 2 (B)
5 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:	20%	of total cover:		OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15')				FACW species 30 x 2 = 60
1				FAC species 40 x 3 =120
2				FACU species 0 x 4 = 0
3				UPL species 0 x 5 = 0
4				Column Totals: 70 (A) 180 (B)
5				Prevalence Index = B/A =2.57
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				X 3 - Prevalence Index is ≤3.0 ¹
50% of total cover:		=Total Cover of total cover:		4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Unknown carex	40	Yes	FAC	¹ Indicators of hydric soil and wetland hydrology must be
2. Juncus effusus	30	Yes	FACW	present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5 6.				more in diameter at breast height (DBH), regardless of height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	70	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 3		of total cover:	14	height.
Woody Vine Stratum (Plot size: 15')	<u> </u>			
1.				
0				
4.				
5.				
		=Total Cover		Hydrophytic
50% of total cover:		of total cover:		Vegetation Present? Yes X No
Remarks: (Include photo numbers here or on a sepa Vegetation influenced by grazing and pasture manage				
vegetation initidenced by grazing and pasture manag	gement.			

SOIL

Profile Desc	ription: (Describe	to the dep	th needed to docu	ument t	he indica	tor or co	onfirm the abse	nce of indicators.)
Depth	Matrix		Redo	x Featur	es			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10YR 4/2	100					Loamy/Claye	v
						·		
						·		
		<u> </u>				<u> </u>		
						<u> </u>		
		. <u> </u>						
¹ Type: C=Co	ncentration, D=Depl	etion, RM	=Reduced Matrix, N	/IS=Mas	ked Sanc	Grains.	² Loc	ation: PL=Pore Lining, M=Matrix.
Hydric Soil I								Indicators for Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Be	elow Sur	face (S8)	(MLRA	147, 148)	2 cm Muck (A10) (MLRA 147)
Histic Ep	ipedon (A2)		Thin Dark S	urface (S	59) (MLR	A 147, 14	-	Coast Prairie Redox (A16)
Black His	tic (A3)		Loamy Muck	y Miner	al (F1) (N	ILRA 136	5)	(MLRA 147, 148)
Hydroger	n Sulfide (A4)		Loamy Gleye	ed Matri	x (F2)			Piedmont Floodplain Soils (F19)
Stratified	Layers (A5)		X Depleted Ma	trix (F3)			-	(MLRA 136, 147)
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Parent Material (F21)
Depleted	Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)		-	(outside MLRA 127, 147, 148)
Thick Da	rk Surface (A12)		Redox Depre	essions	(F8)			Very Shallow Dark Surface (F22)
Sandy M	ucky Mineral (S1)		Iron-Mangar	ese Ma	sses (F12	2) (LRR N	I,	Other (Explain in Remarks)
Sandy G	eyed Matrix (S4)		MLRA 136	5)			_	
Sandy R	edox (S5)		Umbric Surfa	ace (F13	B) (MLRA	122, 136	5)	³ Indicators of hydrophytic vegetation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	19) (MLR	A 148)	wetland hydrology must be present,
Dark Sur	face (S7)		Red Parent	Vaterial	(F21) (M	LRA 127,	, 147, 148)	unless disturbed or problematic.
Restrictive L	ayer (if observed):							
Type:	Bedro	ock						
Depth (in	ches):	6					Hydric Soil P	Present? Yes X No
Remarks:								

Redox features disturbed by cattle. Auger refusal at 6 inches.

Project/Site: Bug Headwaters Mitigation Sit	(e	City/County: Traphill/W	/ilkes	Sampling Date: 11/18/19	
Applicant/Owner: Wildlands Engineering			State: NC	Sampling Point: DP10 Upland	
Investigator(s): C. Neaves		Section, Township, Range:			
Landform (hillside, terrace, etc.): Side Slop	e Lo	ocal relief (concave, convex,		Slope (%): 3	
Subregion (LRR or MLRA): LRR P, MLRA 1			80.984566	Datum:	
Soil Map Unit Name: Fairview sandy clay loa			NWI classifica		
· · · · · · · · · · · · · · · · · · ·					
Are climatic / hydrologic conditions on the site				explain in Remarks.)	
Are Vegetation X, Soil, or Hydro			ircumstances" present?		
Are Vegetation, Soil, or Hydro	logynaturally probl	ematic? (If needed, exp	plain any answers in Re	emarks.)	
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point location	ons, transects, im	portant features, etc.	
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled Area			
Hydric Soil Present?	Yes No X	within a Wetland?	Yes	No X	
Wetland Hydrology Present?	Yes No X				
Remarks: Above Normal Rainfall.					
HYDROLOGY					
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)	
Primary Indicators (minimum of one is require	red; check all that apply)		Surface Soil Crac	ks (B6)	
Surface Water (A1)	True Aquatic Plants	(B14)	Sparsely Vegetate	ed Concave Surface (B8)	
High Water Table (A2)	Hydrogen Sulfide Oc		Drainage Patterns (B10)		
Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines		
Water Marks (B1)	Presence of Reduce	· · ·	Dry-Season Wate		
Sediment Deposits (B2)		on in Tilled Soils (C6)	Crayfish Burrows		
Drift Deposits (B3)	Thin Muck Surface (e on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	Other (Explain in Re	marks)	Stunted or Stress	()	
Iron Deposits (B5)	-		Geomorphic Posit		
Inundation Visible on Aerial Imagery (B7	()		Shallow Aquitard		
Water-Stained Leaves (B9)			Microtopographic		
Aquatic Fauna (B13)			FAC-Neutral Test	. (D5)	
Field Observations:	11 Danth (inch	、 、			
Surface Water Present? Yes	No Depth (inch				
Water Table Present? Yes	No Depth (inch No Depth (inch		Understand Procont?	Vee No Y	
Saturation Present? Yes	No Depth (inch		Hydrology Present?	Yes <u>No X</u>	
(includes capillary fringe) Describe Recorded Data (stream gauge, mo	pritoring well aerial photo:	e previous inspections) if a	vailahla.		
	moning won, aonai photoc				
Remarks:					

Sampling Point: DP10 Upland

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
2				
3 4.				Total Number of Dominant Species Across All Strata: 1 (B)
5.				
6				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
/		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		$\frac{1}{\text{OBL species}} 0 \qquad \text{x1} = 0$
Sapling/Shrub Stratum (Plot size: 15')	· - ·			FACW species $0 \times 2 = 0$
1.				FAC species $0 \times 3 = 0$
2.				FACU species $100 \times 4 = 400$
3.				UPL species $0 \times 5 = 0$
4.				Column Totals: 100 (A) 400 (B)
5.				Prevalence Index = $B/A = 4.00$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
o				2 - Dominance Test is >50%
9.				3 - Prevalence Index is $\leq 3.0^1$
·		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:		of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Schedonorus arundinaceus	80	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Cynodon dactylon	10	No	FACU	present, unless disturbed or problematic.
3. Trifolium repens	10	No	FACU	Definitions of Four Vegetation Strata:
4				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of
6				height.
7				Sapling/Shrub - Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9				(1 m) tall.
10 11.				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
	100	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 50		of total cover:	20	height.
Woody Vine Stratum (Plot size: 15')	1 2070		20	
1.				
2.				
3				
4.				
5.				
		=Total Cover		Hydrophytic
50% of total cover:		of total cover:		Vegetation Present? Yes No X
			<u> </u>	
Remarks: (Include photo numbers here or on a separ	,			
Vegetation influenced by grazing and pasture manag	ement.			

Depth	Matrix		Redo	x Featur	es				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-4	5YR 4/4	100					Loamy/Clayey		
4-11	2.5YR 4/6	80	2.5YR 4/1	20	D	М	Loamy/Clayey		
11-12	2.5YR 4/1	90	7.5YR 4/6	10	<u> </u>	<u>M</u>	Loamy/Clayey	Prominent redox concentrations	
Type: C=Co	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	MS=Mas	ked Sand	Grains.	² Locatio	on: PL=Pore Lining, M=Matrix.	
lydric Soil I	Indicators:						Inc	dicators for Problematic Hydric Soil	
Histosol	(A1)		Polyvalue B	elow Sur	face (S8)	(MLRA	147, 148)	2 cm Muck (A10) (MLRA 147)	
Histic Ep	oipedon (A2)		Thin Dark S	urface (S	69) (MLR	A 147, 14	48)	Coast Prairie Redox (A16)	
Black His	stic (A3)		Loamy Mucl	ky Miner	al (F1) (N	ILRA 136	6) 		
Hydroge	n Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedmont Floodplain Soils (F19)	
Stratified	Layers (A5)		Depleted Ma	atrix (F3)				(MLRA 136, 147)	
2 cm Mu	ck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Parent Material (F21)	
Depleted	Below Dark Surface	e (A11)	Depleted Da	ark Surfa	ce (F7)			 (outside MLRA 127, 147, 148)	
Thick Da	ark Surface (A12)		Redox Depr	essions	(F8)		Very Shallow Dark Surface (F22)		
Sandy M	lucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12	2) (LRR N	N,	Other (Explain in Remarks)	
Sandy G	leyed Matrix (S4)		MLRA 13	6)					
Sandy R	edox (S5)		Umbric Surf	ace (F13	B) (MLRA	122, 136	6) ³ In	dicators of hydrophytic vegetation and	
	Matrix (S6)		Piedmont FI	,	<i>,</i> .		•	wetland hydrology must be present,	
	face (S7)		Red Parent					unless disturbed or problematic.	
	_ayer (if observed):								
Type:									
Depth (ir	nches):						Hydric Soil Pre	sent? Yes No X	

Project/Site: Bug Headwaters Mitigation Si	te	City/County: Traphill/W	likes	Sampling Date: 11/20/19	
Applicant/Owner: Wildlands Engineering	g		State: NC	Sampling Point: DP11 Wetland H	
Investigator(s): C. Neaves		Section, Township, Range			
Landform (hillside, terrace, etc.): Floodplai	Lc	ocal relief (concave, convex,		Slope (%): 1	
Subregion (LRR or MLRA): LRR P, MLRA			80.987255	Datum:	
	130 Eat. 30.310100	Long.			
Soil Map Unit Name: Codorus Ioam	te toute at few this time a store		NWI classifica		
Are climatic / hydrologic conditions on the sit				explain in Remarks.)	
Are Vegetation X, Soil X, or Hydro			Circumstances" present	t? Yes No X	
Are Vegetation, Soil, or Hydro	ology naturally probl	lematic? (If needed, ex	plain any answers in R	emarks.)	
SUMMARY OF FINDINGS – Attach	n site map showing	sampling point locati	ons, transects, in	nportant features, etc.	
Hydrophytic Vegetation Present?	Yes X No	Is the Sampled Area			
Hydric Soil Present?	Yes X No	within a Wetland?	Yes X	No	
Wetland Hydrology Present?	Yes X No				
Remarks:					
Above Normal Rainfall.					
The area is impacted by pond constuction,	dredge, and fill activities.				
HYDROLOGY					
Wetland Hydrology Indicators:			Socondary Indicators	(minimum of two required)	
Primary Indicators (minimum of one is requ	ired: check all that apply)		Surface Soil Cra		
X Surface Water (A1)	True Aquatic Plants	(B14)		ted Concave Surface (B8)	
X High Water Table (A2)	Hydrogen Sulfide Od		Drainage Patterns (B10)		
X Saturation (A3)		res on Living Roots (C3)	Moss Trim Lines		
Water Marks (B1)	Presence of Reduce		Dry-Season Wat		
Sediment Deposits (B2)		on in Tilled Soils (C6)	Crayfish Burrows		
Drift Deposits (B3)	Thin Muck Surface ((C7)	Saturation Visible	e on Aerial Imagery (C9)	
Algal Mat or Crust (B4)	Other (Explain in Re	emarks)	Stunted or Stress	sed Plants (D1)	
Iron Deposits (B5)			Geomorphic Pos	sition (D2)	
Inundation Visible on Aerial Imagery (B	7)		Shallow Aquitard	I (D3)	
Water-Stained Leaves (B9)			Microtopographic	c Relief (D4)	
Aquatic Fauna (B13)			FAC-Neutral Tes	st (D5)	
Field Observations:					
Surface Water Present? Yes X	No Depth (inch	nes): 0			
Water Table Present? Yes X	No Depth (inch				
Saturation Present? Yes X	No Depth (inch	nes): 0 Wetland	Hydrology Present?	Yes X No	
(includes capillary fringe)					
Describe Recorded Data (stream gauge, m	onitoring well, aerial photos	s, previous inspections), if a	vailable:		
Remarks:					

Sampling Point: DP11 Wetland H

5.	A) B) (A/B)
2. Diospyros virginiana 5 Yes FAC That Are OBL, FACW, or FAC: 3 3.	[B)
3.	[B)
4. Species Across All Strata: 3 5. Percent of Dominant Species 6. That Are OBL, FACW, or FAC: 100.0% 7. Prevalence Index worksheet: 50% of total cover: 10 20% of total cover: 4 Sapling/Shrub Stratum (Plot size: 15') FACW species 10 X Y Y Y Y Y Y Y <td></td>	
5.	
6.	A/B)
Prevalence Index worksheet: 20 =Total Cover 50% of total cover: 10 20% of total cover: 4 OBL species 0 x 1 = 0 FACW species 10 x 2 = 20	<u>A/B)</u>
20 =Total Cover Total % Cover of: Multiply by: 50% of total cover: 10 20% of total cover: 4 OBL species 0 x 1 = 0 Sapling/Shrub Stratum (Plot size: 15') FACW species 10 x 2 = 20	_
50% of total cover: 10 20% of total cover: 4 OBL species 0 x 1 = 0 Sapling/Shrub Stratum (Plot size: 15') FACW species 10 x 2 = 20	-
Sapling/Shrub Stratum (Plot size: 15') FACW species 10 x 2 = 20	
	_
	-
1 FAC species 20 x 3 = 60	_
2 FACU species x 4 =	_
3 UPL species x 5 =	
4 Column Totals: 30 (A) 80	(B)
5 Prevalence Index = B/A = 2.67	_
6. Hydrophytic Vegetation Indicators:	
71 - Rapid Test for Hydrophytic Vegetation	
8 X_2 - Dominance Test is >50%	
9. X 3 - Prevalence Index is ≤3.0 ¹	
=Total Cover 4 - Morphological Adaptations ¹ (Provide sup	orting
50% of total cover: 20% of total cover: data in Remarks or on a separate sheet)	
Herb Stratum (Plot size: 5') Problematic Hydrophytic Vegetation ¹ (Explain	1)
1. Juncus effusus 10 Yes FACW ¹ Indicators of hydric soil and wetland hydrology r	
2. present, unless disturbed or problematic.	usi be
3. Definitions of Four Vegetation Strata:	
4 Tree – Woody plants, excluding vines, 3 in. (7.6	m) or
5 more in diameter at breast height (DBH) regard	,
6. height.	
7.	
9. (1 m) tall.	
	ممعا
10. Herb – All herbaceous (non-woody) plants, rega 11 of size, and woody plants less than 3.28 ft tall.	liess
	6 1
<u>10</u> =Total Cover Woody Vine – All woody vines greater than 3.28	πin
Woody Vine Stratum (Plot size: 15')	
1	
2	
2. 3	
3.	
3.	
3.	
3.	
3.	
3.	
3.	

Depth	Matrix		Redo	x Featur	es			
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-2	7.5YR 4/6	100					Loamy/Clayey	
2-4	7.5YR 4/1	95	7.5YR 5/6	5	С	PL	Loamy/Clayey	Prominent redox concentrations
4-6	7.5YR 5/6	90	7.5YR 5/3	10	D	М	Loamy/Clayey	
6-12	7.5YR 4/1	90	7.5YR 5/6	10	С	М	Loamy/Clayey	Prominent redox concentrations
Type: C=C	oncentration, D=Depl	etion, RM	=Reduced Matrix,	MS=Mas	ked Sand	d Grains.	² Locatio	on: PL=Pore Lining, M=Matrix.
lydric Soil	Indicators:						Ind	icators for Problematic Hydric Soils
Histosol	(A1)		Polyvalue B	elow Sur	face (S8)) (MLRA	147, 148)	2 cm Muck (A10) (MLRA 147)
Histic E	pipedon (A2)		Thin Dark S	urface (S	69) (MLR	A 147, 14	18)	Coast Prairie Redox (A16)
Black H	istic (A3)		Loamy Muc	ky Miner	al (F1) (N	ILRA 136	5) 	- (MLRA 147, 148)
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matriz	x (F2)			Piedmont Floodplain Soils (F19)
Stratifie	d Layers (A5)		X Depleted M	atrix (F3)				(MLRA 136, 147)
2 cm Mi	uck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Parent Material (F21)
Deplete	d Below Dark Surface	e (A11)	Depleted Da	ark Surfa	ce (F7)			(outside MLRA 127, 147, 148)
Thick D	ark Surface (A12)		Redox Depr	essions	(F8)			Very Shallow Dark Surface (F22)
Sandy N	/lucky Mineral (S1)		Iron-Manga	nese Ma	sses (F12	2) (LRR N	l,	Other (Explain in Remarks)
Sandy C	Gleyed Matrix (S4)		MLRA 13	6)				-
Sandy F	Redox (S5)		Umbric Sur	ace (F13	B) (MLRA	122, 136	5) ³ Inc	dicators of hydrophytic vegetation and
Stripped	l Matrix (S6)		Piedmont F	loodplain	Soils (F	19) (MLR	A 148)	wetland hydrology must be present,
Dark Su	Irface (S7)		Red Parent	Material	(F21) (M	LRA 127,	, 147, 148)	unless disturbed or problematic.
Restrictive	Layer (if observed):							
Type: Depth (i							Hydric Soil Pres	sent? Yes X No

Project/Site: Bug Headwaters Mitigation Site	е	City/County: 1	raphill/Wilkes	Sa	mpling Date:	11/20/18		
Applicant/Owner: Wildlands Engineering			State:	NC Sa	mpling Point:	DP12 Upland		
Investigator(s): C. Neaves		Section, Township	. Range:					
Landform (hillside, terrace, etc.): Floodplair	n Lo		convex, none): convex		Slope (%):	2		
Subregion (LRR or MLRA): LRR P, MLRA 1			Long: -80.987431		Datum:			
	<u> </u>			alaasifiaatian	-			
Soil Map Unit Name: Codorus Ioam				classification:		,		
Are climatic / hydrologic conditions on the site			<u> </u>		ain in Remark			
Are Vegetation X, Soil X, or Hydro			Normal Circumstances"	•	Yes	No <u>X</u>		
Are Vegetation, Soil, or Hydro	logynaturally probl	lematic? (If ne	eded, explain any answ	ers in Remar	ks.)			
SUMMARY OF FINDINGS – Attach	site map showing s	sampling point	locations, transe	cts, impoi	rtant featu	res, etc.		
Hudrophytic Vogotation Propert?	Vaa Na V	le the Sempled	Aroo					
Hydrophytic Vegetation Present? Hydric Soil Present?	Yes <u>No X</u> Yes No X	Is the Sampled within a Wetlan		s No	<u>х</u>			
-	Yes No X	within a wettan		· //	<u> </u>			
Remarks:								
Above Normal Rainfall.								
HYDROLOGY								
Wetland Hydrology Indicators:			Secondary Ir	dicators (min	imum of two i	required)		
Primary Indicators (minimum of one is require	red; check all that apply)		Surface	Soil Cracks (E	36)			
Surface Water (A1)	True Aquatic Plants		Sparsely	Sparsely Vegetated Concave Surface (B8)				
High Water Table (A2)	Hydrogen Sulfide Oc			e Patterns (B1				
Saturation (A3)	Oxidized Rhizospher	-		m Lines (B16				
Water Marks (B1)	Presence of Reduce	. ,		son Water Ta				
Sediment Deposits (B2)	Recent Iron Reduction		· · · · · · · · · · · · · · · · · · ·	Burrows (C8)				
Drift Deposits (B3)	Thin Muck Surface (. ,			Aerial Imagery	7 (C9)		
Algal Mat or Crust (B4)	Other (Explain in Re	emarks)		or Stressed P	()			
Iron Deposits (B5)	7\			ohic Position				
Inundation Visible on Aerial Imagery (B7	()			Aquitard (D3)				
Water-Stained Leaves (B9)				ographic Reli				
Aquatic Fauna (B13)				utral Test (D5)			
Field Observations:	No. Donth (inch	200);						
Surface Water Present? Yes Water Table Present? Yes	No Depth (inch No Depth (inch							
Water Table Present? Yes Saturation Present? Yes	No Depth (inch No Depth (inch		Vetland Hydrology Pre	eent?	Yes	No X		
(includes capillary fringe)			retaina nyarology i k	Joenn		<u></u>		
Describe Recorded Data (stream gauge, mo	nitoring well, aerial photos	s, previous inspecti	ons), if available:					
	0		,.					
Remarks:								

Sampling Point: DP12 Upland

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3. 4.				Total Number of Dominant Species Across All Strata: 1 (B)
5.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
6 7.				Prevalence Index worksheet:
/		=Total Cover		Total % Cover of: Multiply by:
50% of total cover:		of total cover:		$\frac{1}{\text{OBL species}} 0 \qquad \text{x 1} = 0$
Sapling/Shrub Stratum (Plot size: 15')	· _ ·	0. 1012. 2 2		FACW species $0 x^2 = 0$
1.				FAC species $0 \times 3 = 0$
2.				FACU species 90 $x 4 = 360$
3.				UPL species $0 \times 5 = 0$
4.				Column Totals: 90 (A) 360 (B)
				$\frac{1}{2} \frac{1}{2} \frac{1}$
5 6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
o				2 - Dominance Test is >50%
8				2 - Dominance Test is >50% 3 - Prevalence Index is $\leq 3.0^1$
9		T-tal Onver		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:		=Total Cover		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Cynodon dactylon	80	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. <u>Schedonorus arundinaceus</u> 3.	10	No	FACU	present, unless disturbed or problematic. Definitions of Four Vegetation Strata:
4				
5.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
6.				
7				Sapling/Shrub – Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft
8				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11.				of size, and woody plants less than 3.28 ft tall.
		=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 45	<u>کا 20%</u>	of total cover:	18	height.
Woody Vine Stratum (Plot size: 15')				
1				
2				
3				
4.				
5.				I hadron hadin
		=Total Cover		Hydrophytic Vegetation
50% of total cover:		of total cover:		Present? Yes No X
Remarks: (Include photo numbers here or on a sepa				
Vegetation influenced by grazing and pasture manag	,			
Vegetation initiation by grazing and pastare manag	omont.			

Depth	Matrix		Redo	x Featur	es					
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Rei	marks
0-2	10YR 3/1	100					Loamy/Cla	yey		
2-12	7.5YR 5/6	90	7.5YR 6/3	10	D	М	Loamy/Cla			
		·		_		_				
		·								
¹ Type: C=C	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	//S=Mas	ked Sand	d Grains.	² L	ocation: PL=	Pore Lining,	M=Matrix.
Hydric Soil	Indicators:							Indicators	for Problem	atic Hydric Soils
Histosol	(A1)		Polyvalue B	elow Sur	face (S8) (MLRA	147, 148)	2 cm N	luck (A10) (N	/ILRA 147)
Histic Ep	oipedon (A2)		Thin Dark S	urface (S	69) (MLR	A 147, 14	48)	Coast I	Prairie Redox	k (A16)
Black Hi	stic (A3)		Loamy Muck	ky Miner	al (F1) (N	ILRA 136	5)	(MLF	RA 147, 148)	
Hydroge	n Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piedmo	ont Floodplai	n Soils (F19)
Stratified	Layers (A5)		Depleted Ma	atrix (F3)				(MLF	RA 136, 147)	
2 cm Mu	ick (A10) (LRR N)		Redox Dark	Surface	(F6)			Red Pa	arent Materia	l (F21)
Depleted	Below Dark Surface	e (A11)	Depleted Da	ırk Surfa	ce (F7)			(outs	ide MLRA 1	27, 147, 148)
Thick Da	ark Surface (A12)		Redox Depr	essions	(F8)			Very Shallow Dark Surface (F22)		
Sandy N	lucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12	2) (LRR N	١,	Other (Explain in Re	emarks)
Sandy G	ileyed Matrix (S4)		MLRA 13	6)						
Sandy F	edox (S5)		Umbric Surf	ace (F13) (MLRA	122, 136	5)	³ Indicators	of hydrophyt	ic vegetation and
Stripped	Matrix (S6)		Piedmont Fl	oodplain	Soils (F	19) (MLR	A 148)	wetland	d hydrology r	nust be present,
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless	disturbed or	problematic.
	Layer (if observed):									
Type:										
Depth (in	nches):						Hydric Soi	I Present?	Yes	No X

Project/Site: Bug Headwaters Mitigation Si	te	City/County: Traphill/Wi	ilkes	Sampling Date: 11/20/19			
Applicant/Owner: Wildlands Engineering]		State: NC	Sampling Point: DP13 Wetland J-M			
Investigator(s): C. Neaves		ection, Township, Range:					
Landform (hillside, terrace, etc.): Floodplai		al relief (concave, convex, r		Slope (%): 2			
Subregion (LRR or MLRA): LRR P, MLRA 1			80.988696	Datum:			
• · · · ·	20 Lat. 20.317495	LONGC					
Soil Map Unit Name: Codorus Ioam			NWI classifica				
Are climatic / hydrologic conditions on the sit				explain in Remarks.)			
Are Vegetation X, Soil , or Hydro			rcumstances" present?	? Yes X No			
Are Vegetation, Soil, or Hydro	ologynaturally problem	natic? (If needed, exp	lain any answers in Re	marks.)			
SUMMARY OF FINDINGS – Attach	i site map showing sa	mpling point location	ons, transects, im	portant features, etc.			
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?		Is the Sampled Area within a Wetland?	YesX	No			
Remarks: Above Normal Rainfall							
HYDROLOGY							
Wetland Hydrology Indicators:			Secondary Indicators	(minimum of two required)			
Primary Indicators (minimum of one is requ	red; check all that apply)		Surface Soil Crac	ks (B6)			
Surface Water (A1)	True Aquatic Plants (B	14)	Sparsely Vegetated Concave Surface (B8)				
High Water Table (A2)	Hydrogen Sulfide Odor		Drainage Patterns (B10)				
X Saturation (A3)	X Oxidized Rhizospheres		Moss Trim Lines	· · ·			
Water Marks (B1)	Presence of Reduced	. ,	Dry-Season Wate				
Sediment Deposits (B2)	Recent Iron Reduction		Crayfish Burrows				
Drift Deposits (B3)	Thin Muck Surface (C7			on Aerial Imagery (C9)			
Algal Mat or Crust (B4)	Other (Explain in Rema	arks)	Stunted or Stress				
Iron Deposits (B5)	7)		Geomorphic Posit				
Inundation Visible on Aerial Imagery (B	()		Shallow Aquitard				
Water-Stained Leaves (B9)			Microtopographic FAC-Neutral Test				
Aquatic Fauna (B13)				(D3)			
Field Observations:	No. V. Douth (inchos						
Surface Water Present? Yes Water Table Present? Yes	No X Depth (inches No X Depth (inches						
Saturation Present? Yes X	No Depth (inches		lydrology Present?	Yes X No			
(includes capillary fringe)			ryurology r resent?				
Describe Recorded Data (stream gauge, mo	onitoring well, aerial photos,	orevious inspections), if av	ailable:				
		······, ····, ····, ····, ····, ····, ····, ····, ····, ····, ····, ····, ···, ····, ····, ····, ····, ····, ···, ···, ···, ···, ···, ····, ··, ···, ···, ···, ··, ···, ···, ···, ···, ···, ···, ···, ···, ···, ···, ···, ···, ···, ··, ···, ···, ···, ··, ···, ···, ···, ··, ···, ···, ···, ···, ··, ···, ···, ··, ···, ···, ··, ··, ···, ··,					
Remarks:							

Sampling Point: P13 Wetland J-

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1. Acer rubrum	50	Yes	FAC	Number of Dominant Species
2. Nyssa sylvatica	15	Yes	FAC	That Are OBL, FACW, or FAC: <u>3</u> (A)
3				Total Number of Dominant
4				Species Across All Strata: 4 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 75.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 33	3 20%	of total cover:	13	OBL species 40 x 1 = 40
Sapling/Shrub Stratum (Plot size: 15')				FACW species 0 x 2 = 0
1				FAC species 65 x 3 = 195
2				FACU species 25 x 4 = 100
3				UPL species 0 x 5 = 0
4				Column Totals: <u>130</u> (A) <u>335</u> (B)
5				Prevalence Index = $B/A = 2.58$
6				Hydrophytic Vegetation Indicators:
7				1 - Rapid Test for Hydrophytic Vegetation
8				X 2 - Dominance Test is >50%
9				X 3 - Prevalence Index is ≤3.0 ¹
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:	20%	of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Schedonorus arundinaceus	20	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Trifolium repens	5	No	FACU	present, unless disturbed or problematic.
3. Murdannia keisak	40	Yes	OBL	Definitions of Four Vegetation Strata:
4				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of height.
6				neight.
7				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
9				(111) tail.
10				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
		=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 33	3 20%	of total cover:	13	height.
Woody Vine Stratum (Plot size: 15')				
1				
2				
3				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a sepa				
Vegetation influenced by grazing and pasture manag	ement.			

Depth	Matrix		Redo	x Featur	es			
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-3	10YR 3/1	85	10YR 4/6	15	С	PL	Loamy/Clay	Prominent redox concentrations
3-12	10YR 4/1	85	10YR 5/8	15	С	PL/M	Loamy/Clay	Prominent redox concentrations
	·							
	oncentration, D=Depl	etion, RN		/IS=Mas	ked Sand	d Grains.	² Lo	ocation: PL=Pore Lining, M=Matrix.
•	Indicators:							Indicators for Problematic Hydric Soils
Histoso			Polyvalue B					2 cm Muck (A10) (MLRA 147)
	pipedon (A2)		Thin Dark S		<i>,</i> .		-	Coast Prairie Redox (A16)
	istic (A3)		Loamy Much	•	. , .	ILRA 136	5)	(MLRA 147, 148)
	en Sulfide (A4)		Loamy Gley					Piedmont Floodplain Soils (F19)
	d Layers (A5)		X Depleted Ma	• •				(MLRA 136, 147)
	uck (A10) (LRR N)		Redox Dark		• •			Red Parent Material (F21)
	d Below Dark Surface	e (A11)	Depleted Da					(outside MLRA 127, 147, 148)
	ark Surface (A12)		Redox Depr		. ,			Very Shallow Dark Surface (F22)
	Aucky Mineral (S1)		Iron-Mangar		sses (F12	2) (LRR N	١,	Other (Explain in Remarks)
Sandy (Gleyed Matrix (S4)		MLRA 13					
Sandy F	Redox (S5)		Umbric Surf					³ Indicators of hydrophytic vegetation and
Stripped	l Matrix (S6)		Piedmont FI	oodplain	Soils (F	19) (MLR	A 148)	wetland hydrology must be present,
Dark Ci	rface (S7)		Red Parent	Material	(F21) (M	LRA 127	, 147, 148)	unless disturbed or problematic.
Dark St	Layer (if observed):							

Project/Site: Bug Headwaters Mitigation Sit	e (City/County: Traphill/Wilkes	3	Sampling Date: 11/20/18			
Applicant/Owner: Wildlands Engineering			State: NC	Sampling Point: DP14 Wetland O			
Investigator(s): C. Neaves	Sect	ion, Township, Range:					
Landform (hillside, terrace, etc.): Floodplair		lief (concave, convex, none	e): concave	Slope (%): 1			
Subregion (LRR or MLRA): LRR P, MLRA 1			-	Olope (76) Datum:			
o (<i>j</i> <u> </u>	30 Lat. 30.310202	Long: -80.98					
Soil Map Unit Name: Codorus Ioam			NWI classificat				
Are climatic / hydrologic conditions on the site				explain in Remarks.)			
Are Vegetation X, Soil , or Hydro	logy significantly disturbe	ed? Are "Normal Circur	nstances" present?	? Yes <u>X</u> No			
Are Vegetation, Soil, or Hydro	logy naturally problemati	ic? (If needed, explain	any answers in Re	marks.)			
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point locations	, transects, im	portant features, etc.			
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?		the Sampled Area thin a Wetland?	Yes X	No			
Remarks:							
HYDROLOGY							
Wetland Hydrology Indicators:		Sec	-	(minimum of two required)			
Primary Indicators (minimum of one is requi			Surface Soil Crack	. ,			
X Surface Water (A1)	True Aquatic Plants (B14)			ed Concave Surface (B8)			
X High Water Table (A2)	Hydrogen Sulfide Odor (C		Drainage Patterns (B10)				
X Saturation (A3)	X Oxidized Rhizospheres on		Moss Trim Lines (
Water Marks (B1)	Presence of Reduced Iron		Dry-Season Wate				
Sediment Deposits (B2)	Recent Iron Reduction in		Crayfish Burrows				
Drift Deposits (B3)	Thin Muck Surface (C7) Other (Explain in Remarks		-	on Aerial Imagery (C9)			
Algal Mat or Crust (B4)		<i></i>	Stunted or Stresse				
Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7	7)		Geomorphic Posit	. ,			
X Water-Stained Leaves (B9))		Shallow Aquitard (
			Microtopographic FAC-Neutral Test				
Aquatic Fauna (B13)		<u> </u>	FAC-ineutral Test	(D5)			
Field Observations:	No. Donth (inchos):	<u>_</u>					
Surface Water Present? Yes X	No Depth (inches):	0					
Water Table Present? Yes X	No Depth (inches):						
Saturation Present? Yes X	No Depth (inches):	0 Wetland Hydr	rology Present?	Yes X No			
(includes capillary fringe)	nitoring well carial photos, prov	viewe inerectione), if evoiled	bla:				
Describe Recorded Data (stream gauge, mo	mitoring well, aenai priotos, prev	nous inspections), il avalla	Jie.				
Remarks:							

Sampling Point: <u>DP14 Wetland C</u>

	Absolute	Dominant	Indicator	
<u>Tree Stratum</u> (Plot size: <u>30'</u>) 1. <i>Acer rubrum</i>	% Cover 70	Species? Yes	Status FAC	Dominance Test worksheet:
2. Nyssa sylvatica	20	Yes	FAC FAC	Number of Dominant SpeciesThat Are OBL, FACW, or FAC:2(A)
3.	20	163	TAU	
4.				Total Number of Dominant Species Across All Strata: 3 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 66.7% (A/B)
7.				Prevalence Index worksheet:
	90	=Total Cover		Total % Cover of: Multiply by:
50% of total cover: 4	5 20%	of total cover:	18	OBL species 0 x 1 = 0
Sapling/Shrub Stratum (Plot size: 15')				FACW species 0 x 2 = 0
1. Ilex opaca	20	Yes	FACU	FAC species 90 x 3 = 270
2.				FACU species 20 x 4 = 80
3.				UPL species 0 x 5 = 0
4.				Column Totals: 110 (A) 350 (B)
5.				Prevalence Index = $B/A = 3.18$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
8.				X 2 - Dominance Test is >50%
9.				3 - Prevalence Index is ≤3.0 ¹
	20	=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 1	0 20%	of total cover:	4	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1.				¹ Indicators of hydric soil and wetland hydrology must be
2.				present, unless disturbed or problematic.
3.				Definitions of Four Vegetation Strata:
4.				Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5.				more in diameter at breast height (DBH), regardless of
6.				height.
7.				Sapling/Shrub – Woody plants, excluding vines, less
8.				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10.				Herb – All herbaceous (non-woody) plants, regardless
11				of size, and woody plants less than 3.28 ft tall.
		=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover:	20%	of total cover:		height.
Woody Vine Stratum (Plot size: 15')				
1				
2				
3				
4				
5				Hydrophytic
		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes X No
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			-
Vegetation influenced by grazing and pasture manage	gement.			

SOIL

Depth	Matrix		Redo	x Featu	es					
inches) Color (moist) %		Color (moist) % Type ¹ Loc ²				Texture		Remarks		
0-6	10YR 2/1						Loamy/Clay	/ey		
6-12	10YR 5/1	96	10YR 6/8	4	С	M	Loamy/Clay	/ev	Prominent redox co	ncentrations
012	101113/1		10111.0/0				Loanty/Olay	<u></u>		neentrations
	·					·				
Type: C=C	oncentration, D=Depl	etion. RM	=Reduced Matrix.	/S=Mas	ked Sand	Grains.	² Le	ocation: P	L=Pore Lining, M=M	latrix.
	Indicators:		,						ors for Problematic	
Histosol			Polyvalue B	elow Su	face (S8)	(MLRA ·	147, 148)		n Muck (A10) (MLR 4	•
Histic E	pipedon (A2)		Thin Dark S	urface (S	69) (MLR	A 147, 14	18)	Coa	st Prairie Redox (A1	6)
Black H	istic (A3)		Loamy Muc	ky Miner	al (F1) (N	ILRA 136	5)	(N	ILRA 147, 148)	
Hydroge	en Sulfide (A4)		Loamy Gley	ed Matri	x (F2)			Piec	lmont Floodplain Soi	ils (F19)
Stratifie	d Layers (A5)		X Depleted Ma	atrix (F3)				(N	ILRA 136, 147)	
2 cm Mi	uck (A10) (LRR N)		Redox Dark	Surface	(F6)			Red	Parent Material (F2	1)
X Deplete	d Below Dark Surface	e (A11)	Depleted Da	rk Surfa	ce (F7)			(o	utside MLRA 127, 1	47, 148)
Thick D	ark Surface (A12)		Redox Depr	essions	(F8)			Very	/ Shallow Dark Surfa	ice (F22)
Sandy M	/lucky Mineral (S1)		Iron-Mangar	nese Ma	sses (F12	2) (LRR N	I,	Oth	er (Explain in Remar	ks)
Sandy C	Gleyed Matrix (S4)		MLRA 13	6)						
Sandy F	Redox (S5)		Umbric Surf	ace (F13	B) (MLRA	122, 136	i)	³ Indicato	ors of hydrophytic ve	getation and
Stripped	Matrix (S6)		Piedmont Fl	oodplair	Soils (F	19) (MLR	A 148)	wetl	and hydrology must	be present,
Dark Su	rface (S7)		Red Parent	Material	(F21) (M	LRA 127,	, 147, 148)	unle	ess disturbed or prob	lematic.
Restrictive	Layer (if observed):									
Type:	,									
	nches):						Hydric Soil	Broont	Yes X	No

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to i Soils, Version 8.0, 2016.

Project/Site: Bug Headwaters Mitigation Site	e City/Count	y: Traphill/Wilkes	Sampling Date: 11/20/19				
Applicant/Owner: Wildlands Engineering		State: NC	Sampling Point: DP15 Upland				
Investigator(s): C. Neaves	Section, Towns	ship. Range:					
Landform (hillside, terrace, etc.): toeslope		ave, convex, none): non	Slope (%): 1				
Subregion (LRR or MLRA): LRR P, MLRA 13		Long: -80.987453	Datum:				
Soil Map Unit Name: Fairview sandy loam	Eur. 00.010040	NWI classifica					
	turning for this time of year?						
Are climatic / hydrologic conditions on the site			explain in Remarks.)				
Are Vegetation X, Soil , or Hydrold		re "Normal Circumstances" present					
Are Vegetation, Soil, or Hydrold	ogynaturally problematic? (If	needed, explain any answers in Re	emarks.)				
SUMMARY OF FINDINGS – Attach	site map showing sampling po	int locations, transects, im	portant features, etc.				
Hydrophytic Vegetation Present?	Yes No X Is the Sampl	ed Area					
	Yes No X within a Wet		No X				
	Yes No X						
Remarks:							
Above Normal Rainfall							
HYDROLOGY							
Wetland Hydrology Indicators:			(minimum of two required)				
Primary Indicators (minimum of one is require		Surface Soil Crac	· ,				
Surface Water (A1)	True Aquatic Plants (B14)		ed Concave Surface (B8)				
High Water Table (A2)	Hydrogen Sulfide Odor (C1)		Drainage Patterns (B10)				
Saturation (A3)	Oxidized Rhizospheres on Living Ro						
Water Marks (B1)	Presence of Reduced Iron (C4)	Dry-Season Wate					
Sediment Deposits (B2)	Recent Iron Reduction in Tilled Soils						
Drift Deposits (B3)	Thin Muck Surface (C7) Other (Explain in Remarks)		e on Aerial Imagery (C9)				
Algal Mat or Crust (B4) Iron Deposits (B5)		Stunted or Stress Geomorphic Posi					
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard	· · · ·				
Water-Stained Leaves (B9)	'	Microtopographic					
Aquatic Fauna (B13)		FAC-Neutral Test					
Field Observations:							
	No X Depth (inches):						
	No X Depth (inches):						
	No X Depth (inches):	Wetland Hydrology Present?	Yes No X				
(includes capillary fringe)			···· <u>·</u> ··· <u>··</u> ·				
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous insp	ections), if available:					
Remarks:							

VEGETATION (Four Strata) – Use scientific names of plants.

Sampling Point: DP15 Upland

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1 2				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3.				Total Number of Dominant
4.				Species Across All Strata: 2 (B)
5				Percent of Dominant Species That Are ORL EACIVL or EAC: 0.0% (A/R)
6 7				That Are OBL, FACW, or FAC: 0.0% (A/B) Prevalence Index worksheet:
/		=Total Cover	·	Total % Cover of: Multiply by:
50% of total cover:		of total cover:		$\frac{1}{\text{OBL species}} 0 \qquad \text{x1} = 0$
Sapling/Shrub Stratum (Plot size: 15')				FACW species $0 x^2 = 0$
1.				FAC species $0 \times 3 = 0$
2.				FACU species 100 x 4 = 400
3.				UPL species 0 x 5 = 0
1				Column Totals: 100 (A) 400 (B)
5.				Prevalence Index = $B/A = 4.00$
6.				Hydrophytic Vegetation Indicators:
7.				1 - Rapid Test for Hydrophytic Vegetation
0				2 - Dominance Test is >50%
o 9.				$3 - $ Prevalence Index is $\leq 3.0^{1}$
		=Total Cover		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover:		of total cover:		data in Remarks or on a separate sheet)
Herb Stratum (Plot size: 5')				Problematic Hydrophytic Vegetation ¹ (Explain)
1. Cynodon dactylon	50	Yes	FACU	¹ Indicators of hydric soil and wetland hydrology must be
2. Unknown Ranunculus	40	Yes	FACU	present, unless disturbed or problematic.
3. Schedonorus arundinaceus	10	No	FACU	Definitions of Four Vegetation Strata:
4		<u> </u>		Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or
5				more in diameter at breast height (DBH), regardless of
6				height.
7				Sapling/Shrub – Woody plants, excluding vines, less
8				than 3 in. DBH and greater than or equal to 3.28 ft
9.				(1 m) tall.
10				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
····	100	=Total Cover		Woody Vine – All woody vines greater than 3.28 ft in
50% of total cover: 50		of total cover:	20	height.
	20%		20	
1				
2				
3.				
4.				
5				Hydrophytic
500/ // / /		=Total Cover		Vegetation
50% of total cover:	20%	of total cover:		Present? Yes No X
Remarks: (Include photo numbers here or on a separation of the sep	,			
Vegetation influenced by grazing and pasture manag	ement.			

Depth	Matrix		Redo	x Featur	es					
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	·	Ren	narks
0-4	10YR 4/3	96	10YR 6/6	4	С	PL	Loamy/Cla	yey	Distinct redox	concentrations
4-12	7.5YR 6/8	100					Loamy/Cla	yey		
		_								
						·	2.			
Type: C=Co Tydric Soil	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	/IS=Mas	ked Sand	Grains.			Pore Lining, N	
-			Polyvaluo B		face (SR)		147 148)			atic Hydric Soil
Histosol (A1) Histic Epipedon (A2) Black Histic (A3)			Polyvalue Below Surface (S8) (MLRA 147, 148) Thin Dark Surface (S9) (MLRA 147, 148)					2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148)		
	n Sulfide (A4)		Loamy Mucky Mineral (F1) (MLRA 136) Loamy Gleyed Matrix (F2) Depleted Matrix (F3)				"	(MLRA 147, 140) Piedmont Floodplain Soils (F19) (MLRA 136, 147)		
_ · ·	l Layers (A5)									
	ick (A10) (LRR N)		·	• • •				-		(E21)
	Below Dark Surface	Δ11)	Redox Dark Surface (F6) Depleted Dark Surface (F7) Redox Depressions (F8)					Red Parent Material (F21) (outside MLRA 127, 147, 148) Very Shallow Dark Surface (F22)		
		- (ATT)								
Thick Dark Surface (A12) Sandy Mucky Mineral (S1)			Iron-Manganese Masses (F12) (LRR N,					Other (Explain in Remarks)		
	ileyed Matrix (S4)		MLRA 130		5000 (112	-/ (=1111	•,			inano)
	edox (S5)			,		122, 136	;)	³ Indicators	of hydrophytic	c vegetation and
Stripped Matrix (S6)			Umbric Surface (F13) (MLRA 122, 136) Piedmont Floodplain Soils (F19) (MLRA 148)				wetland hydrology must be present,			
	rface (S7)		Red Parent	•	,	<i>,</i> .			disturbed or p	-
Restrictive	Layer (if observed):									
Type:										
Depth (ii	iches).						Hydric Soi	I Present?	Yes	No X

This data sheet is revised from Eastern Mountains and Piedmont Regional Supplement Version 2.0 to include the NRCS Field Indicators of Hydric Soils, Version 8.0, 2016.

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE A	AID #		NCDWR#	
	Project Nar	ne Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicar	nt/Owner Nar	ne Wildlands Engineering	Wetland Site Name	Wetland A
	Wetland Ty	pe Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
Lev	el III Ecoregi	on Piedmont	Nearest Named Water Body	Big Bugaboo Creek
	River Bas	sin Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	Yadkin 03040101
	Cour		NCDWR Region	Winston-Salem
\square	Yes 🗌 I	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.321689, -80.981733
		rs affecting the assessment area (may no nake note on the last page if evidence of s	ot be within the assessment area) stressors is apparent. Consider departure f	rom reference, if appropriate, in
recent pa		ce, within 10 years). Noteworthy stressors		
•		modifications (examples: ditches, dams, b		
•	Surface and	sub-surface discharges into the wetland (ex	amples: discharges containing obvious pollu	itants, presence of nearby septic
		ground storage tanks (USTs), hog lagoons,		a alt intrucion at a)
		t community alteration (examples: wegetation mona	lity, insect damage, disease, storm damage	, sait intrusion, etc.)
·	Παυιιαι/μιαι	community alteration (examples. mowing,	clear-culling, exolics, etc.)	
Is the as	sessment a	r ea intensively managed? 🛛 Yes 🗌] No	
Regulato	ory Conside	rations - Were regulatory considerations ev	aluated? Xes INo If Yes, check all that	at apply to the assessment area.
	Anadromous			
		otected species or State endangered or thre	eatened species	
님		arian buffer rule in effect		
		nary Nursery Area (PNA)		
	Publicly own	ed property η of Coastal Management Area of Environm	ental Concern (AEC) (including huffor)	
			upplemental classifications of HQW, ORW, (or Trout
		NCNHP reference community		5 TIOUL
		(d)-listed stream or a tributary to a 303(d)-list	sted stream	
_				
		stream is associated with the wetland, it	f any? (check all that apply)	
	Blackwater			
\square	Brownwater	, check one of the following boxes)	unar 🗍 Wind 🗍 Both	
Is the as	sessment a	rea on a coastal island? 🔲 Yes 🛛	No	
Is the as	sessment a	ea's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
			ring normal rainfall conditions?	
		· · · · · ·		
1. Grou	nd Surface	Condition/Vegetation Condition – assess	ment area condition metric	
			und surface (GS) in the assessment area ar	
asses	sment area.	Compare to reference wetland if applicable	(see User Manual). If a reference is not app	
		dence an effect.		
GS	VS	Net see and the set		
	∏A	Not severely altered	accompany area (around surface alteration and	malee vehicle treate evenesity
□В	⊠B		essment area (ground surface alteration exa	
			acks, bedding, fill, soil compaction, obvious ace, herbicides, salt intrusion [where appropr	
		diversity [if appropriate], hydrologic alterati		ומנכן, באטווט שפטופט, עומצוווע, ופטט
2. Surfa	ce and Sub	Surface Storage Capacity and Duration -	 assessment area condition metric 	
Chec	k a box in ea	ach column. Consider surface storage capa	acity and duration (Surf) and sub-surface sto	prage capacity and duration (Sub).
			1 foot deep is considered to affect surface	
		o attect both surface and sub-surface water	r. Consider tidal flooding regime, if applicab	le.
Surf	Sub	Wotor otorogo conscitu and duration	at altarad	
□A ⊠B	⊟A ⊠B	Water storage capacity and duration are not Water storage capacity or duration are alter	ot altered. ered, but not substantially (typically, not suffi	cient to change vegetation)
	□C		etantially altered (typically, alteration sufficient	
			tion, filling, excessive sedimentation, underg	
.				
			type condition metric (skip for all marshe	S)
	-	Irface Relief – assessment area/wetland		•
	k a box in ea		e for the assessment area (AA) and the wet	•
A	k a box in e a AAWT	ach column. Select the appropriate storage	e for the assessment area (AA) and the wet	•
А За. [k a box in e a ∖A WT ⊒A □A	ach column . Select the appropriate storage Majority of wetland with depressions able t	e for the assessment area (AA) and the wet	•
А За. [[k a box in e a ∖A WT □A □A □B □B	Ach column. Select the appropriate storage Majority of wetland with depressions able t Majority of wetland with depressions able t	e for the assessment area (AA) and the weth o pond water > 1 deep o pond water 6 inches to 1 foot deep	•
4 3a. [[k a box in e a \A WT □A □A □B □B □C □C	Ach column. Select the appropriate storage Majority of wetland with depressions able t Majority of wetland with depressions able t Majority of wetland with depressions able t	e for the assessment area (AA) and the weth to pond water > 1 deep to pond water 6 inches to 1 foot deep to pond water 3 to 6 inches deep	•
3a. [[[[k a box in ea AA WT]A □A]B □B]C □C]D ⊠D	Ach column. Select the appropriate storage Majority of wetland with depressions able t Majority of wetland with depressions able t	e for the assessment area (AA) and the wet to pond water > 1 deep to pond water 6 inches to 1 foot deep to pond water 3 to 6 inches deep to deep	•

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
⊔⊑ 4b. □A ⊠B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA
 - ⊠В From 30 to < 50 feet
 - ПС From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet ΔD ΔD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ∃G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

ΠA

□в

ШE

ΠF

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □с DD From 25 to < 50 acres DD
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- ⊠G ⊠G □G From 1 to < 5 acres
- □н □н ⊟н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□в	□В	From 100 to < 500 acres
□c	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
ПΒ	1 to

1 to 4 ⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

	onaotar	o in an op	
		WT □A ⊠B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
		□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
40		□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
4		□A ⊠B	Dense herb layer Moderate density herb layer

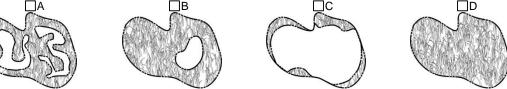
 $\square C \square C$ Herb layer sparse or absent

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- $\Box C$ Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

□A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 □A Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland A	Date of Assessment	9/11/2020	0	
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands	
Notes on Field Assessment Form (Y/N)		NO		
Presence of regulatory considerations (Y/N)				
Wetland is intensively managed (Y/N)				
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)				
Assessment area is substantially altered by beaver (Y/N)				
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)				
Assessment area is on a coastal island (Y/N)				

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-surface Storage and Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	MEDIUM
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5	
-----------------------------------	--

USACE AID #		NCDWR#	
Project Name	Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	
Wetland Type	Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregion	Piedmont	Nearest Named Water Body	Big Bugaboo Creek
River Basin	Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	Yadkin 03040101
County	Wilkes	NCDWR Region	Winston-Salem
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.320659, -80.984142
	iffecting the assessment area (may no e note on the last page if evidence of s	t be within the assessment area) tressors is apparent. Consider departure f	rom reference, if appropriate, in
		include, but are not limited to the following.	
	odifications (examples: ditches, dams, b		
 Surface and sull 	b-surface discharges into the wetland (ex	amples: discharges containing obvious pollu	itants, presence of nearby septic
	ound storage tanks (USTs), hog lagoons,	etc.) lity, insect damage, disease, storm damage	salt intrusion etc.)
	ommunity alteration (examples: mowing,		, sait initiasion, etc.)
Is the assessment area		No	
		aluated? ⊠Yes □No If Yes, check all tha	at apply to the assessment area.
Anadromous fis	n cted species or State endangered or thre	atened species	
NCDWR riparia	in buffer rule in effect		
Abuts a Primar	y Nursery Area (PNA)		
Publicly owned	property		
	Coastal Management Area of Environm		- .
Abuts a stream		upplemental classifications of HQW, ORW, o	or Trout
Designated NC	NHP reference community	tod stroom	
	listed stream or a tributary to a 303(d)-lis	sieu siream	
What type of natural str	eam is associated with the wetland, if	any? (check all that apply)	
Blackwater			
Brownwater			
Tidal (if tidal, ch	neck one of the following boxes)	unar 🗌 Wind 🔲 Both	
Is the assessment area	on a coastal island? 🗌 Yes 🛛 I	No	
le the accomment area	e curfaco wator storago conocity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
Does the assessment a	rea experience overbank flooding dur	ing normal rainfall conditions?	🛛 No
1. Ground Surface Cor	ndition/Vegetation Condition – assess	ment area condition metric	
	-	und surface (GS) in the assessment area ar	nd vegetation structure (VS) in the
assessment area. Co	mpare to reference wetland if applicable	(see User Manual). If a reference is not app	
area based on evider			
GS VS			
	ot severely altered	according to the second state of the second st	
		essment area (ground surface alteration exa cks, bedding, fill, soil compaction, obvious	
		ces, bedding, fill, soll compaction, obvious ce, herbicides, salt intrusion [where appropr	
	versity [if appropriate], hydrologic alteration		ומנטן, בגטווט שבטובש, עומצוווע, ופצצ
	rface Storage Capacity and Duration -		
Check a box in each	column. Consider surface storage capa	acity and duration (Surf) and sub-surface sto	prage capacity and duration (Sub).
		1 foot deep is considered to affect surface	
	TRECT DOTH SUFFACE and SUB-SUFFACE water	. Consider tidal flooding regime, if applicable	Ie.
Surf Sub □A □A W	ater storage capacity and duration are no	nt altered	
		red, but not substantially (typically, not suffic	cient to change vegetation)
		stantially altered (typically, alteration sufficient	
		ion, filling, excessive sedimentation, underg	
		ype condition metric (skip for all marshe	
•			•
	column. Select the appropriate storage	e for the assessment area (AA) and the wet	ana type (vv I).
AA WT 3a. □A □A Ma	ajority of wetland with depressions able to	n pond water > 1 deep	
	ajority of wetland with depressions able to		
	ajority of wetland with depressions able to		
	epressions able to pond water < 3 inches		
	at maximum depth of inundation is great	•	

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΠA ≥ 50 feet
 - □в From 30 to < 50 feet
 - □с From 15 to < 30 feet
 - ΜD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ⊠G ΠG From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable) ≥ 500 acres

ΠA

□в

ШE

ΠF

 \boxtimes I

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н □н From 0.5 to < 1 acre
 - N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□в	□В	From 100 to < 500 acres
□c	□С	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0	
IR	1	tr

1 to 4 ⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank <u>and</u> overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland B	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)			NO
Presence of regulatory considerations (Y/N)			YES
Wetland is intensively managed (Y/N) YES			
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N) YES			YES
Assessment area is substantially altered by beaver (Y/N)			NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)		NO
Assessment area is on a coastal island (Y/N)		-	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-surface Storage and Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summar	у		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE AID #		NCDWR#	
Project Name	Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	Wetland C
Wetland Type Headwater Forest		Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregion	Piedmont	Nearest Named Water Body	Big Bugaboo Creek
River Basin	Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	
County	Wilkes	NCDWR Region	Winston-Salem
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.320513, -80.984210
	iffecting the assessment area (may no	t be within the assessment area) tressors is apparent. Consider departure f	rom reference if appropriate in
		include, but are not limited to the following.	ien reference, il appropriate, ill
 Hydrological model 	odifications (examples: ditches, dams, b	eaver dams, dikes, berms, ponds, etc.)	
 Surface and sul 	b-surface discharges into the wetland (ex	amples: discharges containing obvious pollu	itants, presence of nearby septic
	ound storage tanks (USTs), hog lagoons,		
	tion stress (examples: vegetation morta mmunity alteration (examples: mowing,	lity, insect damage, disease, storm damage	, sait intrusion, etc.)
	mmunity alteration (examples: mowing,	clear-cutting, exolics, etc.)	
Is the assessment area	intensively managed? Xes	No	
Regulatory Consideration		aluated? ⊠Yes □No If Yes, check all tha	at apply to the assessment area.
	cted species or State endangered or thre	atened species	
NCDWR riparia	n buffer rule in effect		
Abuts a Primary	y Nursery Area (PNA)		
Federally protect NCDWR riparia Abuts a Primary Publicly owned N.C. Division of Abuts a stream Designated NC Abuts a 303(d)-			
N.C. Division of	Coastal Management Area of Environm		or Trout
Abuts a stream Designated NC	With a NCDWQ classification of SA of st NHP reference community	upplemental classifications of HQW, ORW, o	or Trout
	listed stream or a tributary to a 303(d)-lis	sted stream	
_ ()			
	ream is associated with the wetland, if	any? (check all that apply)	
Blackwater			
Brownwater Tidal (if tidal, ch			
_ ()	neck one of the following boxes)		
Is the assessment area	on a coastal island? Ves Vi	No	
Is the assessment area	's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
		ing normal rainfall conditions?	
	ndition/Vegetation Condition – assess		
		und surface (GS) in the assessment area ar	
		(see User Manual). If a reference is not app	plicable, then rate the assessment
area based on eviden GS VS			
— · · · · · · · ·	ot severely altered		
		essment area (ground surface alteration exa	amples: vehicle tracks. excessive
		icks, bedding, fill, soil compaction, obvious	
alt	eration examples: mechanical disturban	ce, herbicides, salt intrusion [where appropr	
	versity [if appropriate], hydrologic alteration		
	rface Storage Capacity and Duration -		
			read conceits, and duration (Cut)
Consider both increase	column. Consider surface storage capa	acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface	mage capacity and duration (SUb).
		. Consider tidal flooding regime, if applicable	
Surf Sub			
	ater storage capacity and duration are no	ot altered.	
B B Wa		red, but not substantially (typically, not suffic	cient to change vegetation).
XC XC Wa	ater storage capacity or duration are sub	stantially altered (typically, alteration sufficie	ent to result in vegetation change)
(ex	xamples: draining, flooding, soil compact	ion, filling, excessive sedimentation, underg	round utility lines).
3. Water Storage/Surfa	ce Relief – assessment area/wetland	type condition metric (skip for all marshe	es)
•		e for the assessment area (AA) and the wet	•
AA WT			
	ajority of wetland with depressions able to	o pond water > 1 deep	
🗌 B 🔲 B Ma	ajority of wetland with depressions able t	o pond water 6 inches to 1 foot deep	
□C □C Ma	ajority of wetland with depressions able to		
	pressions able to pond water < 3 inches	deep	

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
⊔⊑ 4b. □A ⊠B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA
 - ⊠В From 30 to < 50 feet
 - ПС From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ⊠Ε ⊠Ε From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ∃G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable) ≥ 500 acres

ΠA

□в

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □с DD From 25 to < 50 acres DD
- ШE ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- ΠF □G □G □G From 1 to < 5 acres
- ШH ⊠н ⊟н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ΠА
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	A	≥ 500 acres
□в	□В	From 100 to < 500 acres
□C	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
ПΒ	1 to

1 to 4 ⊠c

5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland C	Date of Assessment	9/11/2020)	
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands		
Notes on Field Assessment Form (Y/N) NO				
Presence of regulatory considerations (Y/N)			YES	
Wetland is intensively managed (Y/N)			YES	
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)			YES	
Assessment area is substantially altered by beaver (Y/N)			NO	
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)		NO		
Assessment area is on a coastal island (Y/N)			NO	

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-surface Storage and Retention	Condition	LOW
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ıry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USA	CE AID	#		NCDWR#	
		 oject Nan	e Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Apr		wner Nam		Wetland Site Name	Wetland D
		etland Typ		Assessor Name/Organization	C. Neaves/Wildlands
		I Ecoregio		Nearest Named Water Body	Big Bugaboo Creek
		River Bas	n Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	
		Coun	y Wilkes	NCDWR Region	Winston-Salem
	🛛 Ye	es 🗌 N	o Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.323751, -80.981386
			s affecting the assessment area (may no	ot be within the assessment area) stressors is apparent. Consider departure f	rom reference, if appropriate, in
				include, but are not limited to the following.	rom reference, il appropriate, in
	• Hyd	drological	modifications (examples: ditches, dams, b	beaver dams, dikes, berms, ponds, etc.)	
	 Sur 	face and	sub-surface discharges into the wetland (ex	xamples: discharges containing obvious pollu	utants, presence of nearby septic
			round storage tanks (USTs), hog lagoons		
			etation stress (examples: vegetation morta community alteration (examples: mowing	ality, insect damage, disease, storm damage	, sait intrusion, etc.)
	• nai	onal/piant	community alteration (examples: mowing	, clear-cutting, exotics, etc.)	
ls th	e asses	sment ar	ea intensively managed? 🛛 Yes 🗌] No	
Reg □		Consider adromous		valuated? ⊠Yes □No If Yes, check all that	at apply to the assessment area.
\square			tected species or State endangered or thr	eatened species	
	NC	DWR ripa	rian buffer rule in effect	·	
	Abu	uts a Prim	ary Nursery Area (PNA)		
			ed property		
			of Coastal Management Area of Environn		ar Trout
				upplemental classifications of HQW, ORW, o	or Trout
			ICNHP reference community d)-listed stream or a tributary to a 303(d)-li	sted stream	
_			,		
			stream is associated with the wetland, i	f any? (check all that apply)	
		ckwater			
\square		wnwater	about and of the following barres		
	lid	ai (it tidal,	check one of the following boxes)	unar 🗌 Wind 🔲 Both	
Is th	e asses	sment ar	ea on a coastal island? 🗌 Yes 🛛	No	
Is th	e asses	sment ar	a's surface water storage capacity or c	luration substantially altered by beaver?	🗌 Yes 🖾 No
				ring normal rainfall conditions?	
	5				
	Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment				
				e (see User Manual). If a reference is not app	plicable, then rate the assessment
			ence an effect.		
		VS □A	Not severely altered		
L F	_IA ⊠B		Not severely altered Severely altered over a maiority of the ass	essment area (ground surface alteration exa	amples: vehicle tracks excessive
Ł				acks, bedding, fill, soil compaction, obvious	
				nce, herbicides, salt intrusion [where appropr	
			diversity [if appropriate], hydrologic alterat		
2 6	Surface				
			Surface Storage Capacity and Duration		
C C	neck a	box in ea	cn column. Consider surface storage cap	acity and duration (Surf) and sub-surface sto	prage capacity and duration (Sub).
				1 foot deep is considered to affect surface r. Consider tidal flooding regime, if applicab	
		Sub	anect both surface and sub-surface wate	. Consider lidar nooding regime, if applicab	
		_	Water storage capacity and duration are n	ot altered.	
		=		ered, but not substantially (typically, not suffi	cient to change vegetation).
		=		ostantially altered (typically, alteration sufficient	
_				tion, filling, excessive sedimentation, underg	
3. V	Vater St	orage/Su	face Relief - assessment area/wetland	type condition metric (skip for all marshe	es)
		-			•
C			ch column. Geleci the appropriate storag	e for the assessment area (AA) and the wet	
3	a. □A		Majority of wetland with depressions able	to pond water > 1 deep	
			Majority of wetland with depressions able		
	□c		Majority of wetland with depressions able		
	⊠D		Depressions able to pond water < 3 inches		
3	b. 🗆 A	Evidence	that maximum depth of inundation is grea	ter than 2 feet	
			that maximum danth of inundation is both		

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. 🔲 A	Sandy soil
□В	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
⊠C	Loamy or clayey soils not exhibiting redoximorphic features
D	Loamy or clayey gleyed soil
Ē	Histosol or histic epipedon
4b. □A ⊠B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ΠA ⊡в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C □с ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G ⊠G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA
 - ⊠Β From 30 to < 50 feet
 - ПС From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ⊠Ε ⊠Ε From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ∃G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable) ≥ 500 acres

ΠA

□в

ШE

ΠF

 \boxtimes I

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н ШΗ □н From 0.5 to < 1 acre
 - N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□в	□В	From 100 to < 500 acres
□c	□С	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0	
IR	1	tr

1 to 4 ⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland D	Date of Assessment	9/11/2020	0	
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands	
Notes on Field Assessment Form (Y/N)				
Presence of regulatory considerations (Y/N)			YES	
Wetland is intensively managed (Y/N)			YES	
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)			YES	
Assessment area is substantially altered by beaver (Y/N)			NO	
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)		NO		
Assessment area is on a coastal island (Y/N)			NO	

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
Function Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating Low

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE AID # NCDWR#					
Project Name Bug Headwaters Mitigation Site Date of Evaluation 9/11/2020					
Applicant/Owner Name Wildlands Engineering Wetland Site Name Wetland E					
Wetland Type Headwater Forest Assessor Name/Organization C. Neaves/Wild	lands				
Level III Ecoregion Piedmont Nearest Named Water Body Big Bugaboo Ci	reek				
River Basin Yadkin-PeeDee USGS 8-Digit Catalogue Unit Yadkin 0304010					
County Wilkes NCDWR Region Winston-Salem					
Yes No Precipitation within 48 hrs? Latitude/Longitude (deci-degrees) 36.324881, -80.	.982747				
Evidence of stressors affecting the assessment area (may not be within the assessment area) Please circle and/or make note on the last page if evidence of stressors is apparent. Consider departure from reference, if	appropriate, in				
recent past (for instance, within 10 years). Noteworthy stressors include, but are not limited to the following.					
Hydrological modifications (examples: ditches, dams, beaver dams, dikes, berms, ponds, etc.)					
 Surface and sub-surface discharges into the wetland (examples: discharges containing obvious pollutants, presence of 	of nearby septic				
tanks, underground storage tanks (USTs), hog lagoons, etc.)	-)				
 Signs of vegetation stress (examples: vegetation mortality, insect damage, disease, storm damage, salt intrusion, et Habitat/plant community alteration (examples: mowing, clear-cutting, exotics, etc.) 	c.)				
Thabitat plant community alteration (examples: mowing, clear-cutting, exotics, etc.)					
Is the assessment area intensively managed? 🛛 Yes 🗌 No					
Regulatory Considerations - Were regulatory considerations evaluated? XYes No If Yes, check all that apply to the ass	sessment area.				
 Anadromous fish Federally protected species or State endangered or threatened species 					
NCDWR riparian buffer rule in effect					
Abuts a Primary Nursery Area (PNA)					
Publicly owned property					
 Federally protected species or State endangered or threatened species NCDWR riparian buffer rule in effect Abuts a Primary Nursery Area (PNA) Publicly owned property N.C. Division of Coastal Management Area of Environmental Concern (AEC) (including buffer) Abuts a stream with a NCDWQ classification of SA or supplemental classifications of HQW, ORW, or Trout Designated NCNHP reference community Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream 					
Abuts a stream with a NCDWQ classification of SA or supplemental classifications of HQW, ORW, or Trout					
Designated NCNHP reference community					
Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream					
What type of natural stream is associated with the wetland, if any? (check all that apply)					
Blackwater					
Brownwater					
☐ Tidal (if tidal, check one of the following boxes) ☐ Lunar ☐ Wind ☐ Both					
Is the assessment area on a coastal island? 🗌 Yes 🛛 No					
Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes	No				
Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No					
1. Ground Surface Condition/Vegetation Condition – assessment area condition metric					
Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the					
assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate					
area based on evidence an effect.					
GS VS					
A A Not severely altered	ooko ovocookis				
⊠B ⊠B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tr sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (veg					
alteration examples: mechanical disturbance, herbicides, salt intrusion [where appropriate], exotic speci					
diversity [if appropriate], hydrologic alteration)	55, yraziny, iess				
2. Surface and Sub-Surface Storage Capacity and Duration – assessment area condition metric					
Check a box in each column. Consider surface storage capacity and duration (Surf) and sub-surface storage capacity and	d duration (Sub).				
Consider both increase and decrease in hydrology. A ditch ≤ 1 foot deep is considered to affect surface water only, while	a ditch > 1 foot				
deep is expected to affect both surface and sub-surface water. Consider tidal flooding regime, if applicable.					
Surf Sub $\Box A$ Water storage capacity and duration are not altered.					
 ☐A ☐A Water storage capacity and duration are not altered. ☑B ☑B Water storage capacity or duration are altered, but not substantially (typically, not sufficient to change vertice) 	anetation)				
$\square C$ Water storage capacity of duration are substantially altered (typically, alteration sufficient to result in veg					
(examples: draining, flooding, soil compaction, filling, excessive sedimentation, underground utility lines)					
3. Water Storage/Surface Relief – assessment area/wetland type condition metric (skip for all marshes)					
AA WT	Check a box in each column . Select the appropriate storage for the assessment area (AA) and the wetland type (WT).				
3a. $\square A \square A$ Majority of wetland with depressions able to pond water > 1 deep					
LB Majority of wetland with depressions able to pond water 6 inches to 1 foot deep					
 □B □B Majority of wetland with depressions able to pond water 6 inches to 1 foot deep □C □C Majority of wetland with depressions able to pond water 3 to 6 inches deep 					

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
□B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
⊠C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΠA ≥ 50 feet
 - □в From 30 to < 50 feet
 - □с From 15 to < 30 feet
 - ΜD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF □G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable) ≥ 500 acres

ΠA

□в

ШE

ΠF

 \boxtimes I

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н ⊟н From 0.5 to < 1 acre
 - N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□в	□В	From 100 to < 500 acres
□c	□С	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0	
IR	1	tr

1 to 4 ⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank <u>and</u> overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland E	Date of Assessment	9/11/2020	0
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)			NO
Presence of regulatory considerations (Y/N)			YES
Wetland is intensively managed (Y/N)			YES
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)			YES
Assessment area is substantially altered by beaver (Y/N)			NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)		NO
Assessment area is on a coastal island (Y/N)		-	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
Function Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating Low

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE AID # Bug Headwaters Mitigation Site Date of Evaluation 9/11/2020 Applicant/Owner Name Wildlands Engineering Wetland Site Wetland Site Wetland Site Wetland Type Headwater Forest Assessor Name/Organization C. Neaves/Wildlands Level III Ecoregion Piedmont Nearest Name/Organization C. Neaves/Wildlands Wilkes Calvin/ PeeDee USGS 8-Digit Catalogue Unit Yackin 03040101 Wilkes Calvin/ Wilkes Latitude/Longitude (deci-depres) 36.323170, -80.983617 Evidence of stressors affecting the assessment area (may not be within the assessment area) Please circle and/or make note on the last page if evidence of stressors is logide, but are not limited to the following. Sci23370, -80.983617 Strates and sub-subrade discharges circle and subrade discharges circle and subrade discharges circle and subrade discharges circle assessment area intensively managed? Yes No • Hydrological modifications (examples: mowing, clear-cutting, exotics, etc.) Is the assessment area intensively managed? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yes No No<
Applicant/Owner Name Wildlands Engineering Wetland Site Name Wetland Site Name Wetland Site Name Wetland Site Name/Organization Level III Ecoregion Piedmont Assessor Name/Organization Dig Ugaboo Creek Big Bugaboo Creek County Wiles No Precipitation within 48 hrs? Latitude/Longitude (dci-degrees) 36.323170, 40.983617 Evidence of stressors affecting the assessment area (master Name) 36.323170, 40.983617 Please circle and/or make note on the last page if evidence of stressors is apparent. Consider departure from reference, if appropriate, in recent past (for instance, within 10 years). Noteworthy stressors include, but are not limited to the following. + Hydroigcal modifications (examples: discharges containing obvious pollutants, presence of nearby septic tranks, underground istorage tanks (USTs), hog lagoons, etc.) • Signs of vegetation stress (examples: vegetation mortality, insect damage, disease, storn damage, salt intrusion, etc.) • Habitabiplant community alteration (examples: moving, clear-cuting, exotics, etc.) Is the assessment area intensively managed? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. • Andomowa Ish Foderally protected species or State endangered or threatened species NCDWR region No
Wetland Type Headwater Forest Assessor Name/Crankamed Water Body C. Neaves/Wildlands Level III Ecoregion Winkes Nearest Named Water Body Yes No Yes No Prepriptiation within 48 hrs? Latitude/Longibule (dci-degrees) 36.323170, -80.993617 Evidence of stressors affecting the assessment area (may not be within the assessment area) Please circle and/or make note on the last page if evidence of stressors is apparent. Consider departure from reference, if appropriate, in recent past (for instance, within 10 years). Noteworthy stressors include, but are not limited to the following. • • Hydrological modifications (examples: dicher, dams, beaver dams, dikes, berms, ponds, etc.) • • Sufface and sub-sufface discharges containing obvious pollutants, presence of nearby septic tanks, underground storage tanks (USTs), hog lagoons, etc.) • • Sufface and sub-sufface discharges containing obvious pollutants, presence of nearby septic tanks, underground storage tanks (USTs), hog lagoons, etc.) • • Is the assessment area intensively managed? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yes No Is the assessment area intensively managed? Yes No Moderation of Coastal Management Area of Environmental Concern (AEC) (including buffer) •
River Basin Yadkin-PeeDee USCS 8-Digit Catalogue Unit Yadkin-O3040101 NCDWR Region Wintson Salem NCDWR Region Wintson Salem Please circle and/or make note on the last page if evidence of stressors is exparente. Consider departure from reference, if appropriate, in recent past (for instance, within 10 years). Noteworthy stressors include, but are not limited to the following. • • Hydrological modifications (examples: ditches, dams, beaver dams, dikes, berms, ponds, etc.) • • Surface and sub-surface discharges into the welland (examples: containing obvious pollutants, presence of nearby septic tanks, underground storage tanks (USTs), hog lagoons, etc.) • • Habitat/plant community alteration (examples: weedration mortality, insect damage, disease, storm damage, salt intrusion, etc.) • • Habitat/plant community alteration (examples: weedration mortality, insect damage, disease, storm damage, salt intrusion, etc.) • • Habitat/plant community alteration (examples: mowing, clear-cutting, exotics, etc.) • Is the assessment area intensively managed? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yys No If Yes, check all that apply to the assessment area. • Andormous fib • • Nc Nc • Nc DWK raparian bu
County Winston-Salem Yes No Precipitation within 48 hrs? Latitude/Longitude (deci-degrees) 36.323170, -80.983617 Evidence of stressors affecting the assessment area (may not be within the assessment area) Please circle and/or make note on the last page if evidence of stressors is loude, but are not limited to the following. Hydrological modifications (examples: diches, dams, beaver dams, dikes, berms, ponds, etc.) Surface and sub-surface discharges into the wetland (examples: dicharges containing obvious pollutants, presence of nearby septic tanks, underground storage tanks (USTs), hog lagoons, etc.) Signs of vegetation stress (examples: vegetation mortality, insect damage, disease, storm damage, salt intrusion, etc.) Is the assessment area intensively managed? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yes No If the assessment area. Anadromous fish Abuts a Primary Nursery Area (PNA) Hobibity owned property No. No Publicly owned property N. C. Division of Coastal Management Area of Environmental Concern (AEC) (including buffer) No. No Mota type of natural stream is associated with the wetland, if an? (check al
Yes No Precipitation within 48 hrs? Latitude/Longitude (deci-degrees) 36.323170, -80.983617 Evidence of stressors affecting the assessment area (may not be within the assessment area) Please circle end/or make note on the last page if evidence of stressors is apparent. Consider departure from reference, if appropriate, in recent past (for instance, within 10 years). Noteworthy stressors include, but are not limited to the following. • Hydrological modifications (examples: ditches, dams, beaver dams, dikes, berms, ponds, etc.) • Signed vegetation stress (examples: ditches, dams, beaver dams, dikes, berms, ponds, etc.) • Signed vegetation stress (examples: usediation mortality, insect damage, disease, storm damage, salt intrusion, etc.) • Habitat/plant community alteration (examples: mowing, clear-cutting, exotics, etc.) Is the assessment area intensively managed? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. • Anadronous fish • Federally protected species or State endangered or threatened species • NOUWR riparian buffer rule in effect Abuts a Primary Nursery Area (FNA) • No. Signated NCNHP reference community • Abuts a 303(d)-listed stream What type of natural stream is associated with the wetland, if
Evidence of stressors affecting the assessment area (may not be within the assessment area) Please circle and/or make note on the last page if evidence of stressors is apparent. Consider departure from reference, if appropriate, in recent past (for instance, within 10 years). Noteworthy stressors include, but are not limited to the following. • Hydrological modifications (examples: ditches, dams, beaver dams, dikes, berms, ponds, etc.) • Surface and sub-surface discharges into the wetland (examples: discharges containing obvious pollutants, presence of nearby septic tanks, underground storage tanks (USTs), hog lagoons, etc.) • Signs of vegetation stress (examples: vegetation morality, insect damage, disease, storm damage, salt intrusion, etc.) • Habitatipiant community alteration (examples: moving, clear-outing, exotics, etc.) Is the assessment area intensively managed? Yes No Regulatory Considerations - Were regulatory considerations evaluated? Yes No If Yes, check all that apply to the assessment area. Anadromous fish Federally protected species or State endangered or threatened species NCDWR riparian buffer rule in effect Abuts a trimar with a NCDWQ classification of SA or supplemental classifications of HQW, ORW, or Trout Designated NCNHP reference community Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater
Please circle and/or make note on the last page if evidence of stressors is apparent. Consider departure from reference, if appropriate, in recent past (for instance, within 10 years). Noteworthy stressors include, but are not limited to the following. Hydrological modifications (examples: ditches, dams, beaver dams, dikes, berms, ponds, etc.) Surface and sub-surface discharges into the welland (examples: discharges containing obvious pollutants, presence of nearby septic tanks, underground storage tanks (USTs), hog lagoons, etc.) Signs of vegetation stress (examples: wegetation mortality, insect damage, disease, storm damage, salt intrusion, etc.) Habitat/plant community alteration (examples: mowing, clear-cutting, exotics, etc.) Is the assessment area intensively managed? Yes No Regulatory Considerations - Were regulatory considerations evaluated? System of the assessment area. Anadromous fish Federally protected species or State endangered or threatened species NCDW riparian buffer rule in effect Abuts a primary Nursery Area (PNA) Publicly owned property N.C. Division of Coastal Management Area of Environmental Concern (AEC) (including buffer) Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wind Both Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area's
Surface and sub-surface discharges into the wetland (examples: discharges containing obvious pollutants, presence of nearby septic tanks, underground storage tanks (USTs), hog lagoons, etc.) Signs of vegetation stress (examples: wegetation mortality, insect damage, disease, storm damage, salt intrusion, etc.) Habitatylpant community alteration (examples: mowing, clear-cutting, exotics, etc.) Is the assessment area intensively managed? ⊠ Yes □ No Regulatory Considerations - Were regulatory considerations evaluated? ⊠Yes □ No If Yes, check all that apply to the assessment area. Anadromous fish Federally protected species or State endangered or threatened species NCDWR riparian buffer rule in effect Abuts a Primary Nursery Area (PNA) Publicly owned property N.C. Division of Coastal Management Area of Environmental Concern (AEC) (including buffer) Abuts a stream with a NCDVUQ classification of SA or supplemental classifications of HQW, ORW, or Trout Designated NCNHP reference community Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tridal (if tidal, check one of the following boxes) □ Lunar □ Wind □ Both Is the assessment area on a coastal island? □ Yes ⊠ No Is the assessment area suprience coverbank flooding during normal rainfall conditions? □ Yes ⊠ No Tock a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area and vegetation structure (VS) in the assessment area. Gy vS
Regulatory Considerations - Were regulatory considerations evaluated? ☑Yes ☐No. If Yes, check all that apply to the assessment area. Anadromous fish Federally protected species or State endangered or threatened species NCDWR riparian buffer rule in effect Abuts a Primary Nursery Area (PNA) Publicly owned property N.C. Division of Coastal Management Area of Environmental Concern (AEC) (including buffer) Abuts a stream with a NCDWQ classification of SA or supplemental classifications of HQW, ORW, or Trout Designated NCNHP reference community Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wint type of natural stream on a coastal island? Yes Yes No Is the assessment area on a coastal island? Yes Yes No Is the assessment area experience overbank flooding during normal rainfall conditions? Yes No Ones the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. Gs VS <t< td=""></t<>
Anadromous fish ■ Anadromous fish ■ Federally protected species or State endangered or threatened species ■ NCDWR riparian buffer rule in effect ■ Abuts a Primary Nursery Area (PNA) ■ Publicity owned property ■ N.C. Division of Coastal Management Area of Environmental Concern (AEC) (including buffer) Abuts a stream with a NCDWQ classification of SA or supplemental classifications of HQW, ORW, or Trout ■ Designated NCNHP reference community Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream What type of natural stream is associated with the wetland, if any? (check all that apply) ■ Blackwater ■ Brownwater ■ Tidal (if tidal, check one of the following boxes) □ ■ It is the assessment area on a coastal island? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the asssessment area
□ Federally protected species or State endangered or threatened species □ NCDWR riparian buffer rule in effect □ Abuts a Primary Nursery Area (PNA) □ Publicly owned property □ N.C. Division of Coastal Management Area of Environmental Concern (AEC) (including buffer) □ Abuts a stream with a NCDWQ classification of SA or supplemental classifications of HQW, ORW, or Trout □ Designated NCNHP reference community □ Abuts a 303(d)-listed stream or a tributary to a 303(d)-listed stream What type of natural stream is associated with the wetland, if any? (check all that apply) □ Blackwater □ Tidal (if tidal, check one of the following boxes) □ □ It and if tidal, check one of the following boxes) □ □ It als assessment area on a coastal island? □ Yes No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? □ Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? □ Yes No 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment are
What type of natural stream is associated with the wetland, if any? (check all that apply) □ Blackwater Brownwater □ Tidal (if tidal, check one of the following boxes) □ □ Tidal (if tidal, check one of the following boxes) □ □ Tidal (if tidal, check one of the following boxes) □ Lunar □ □ Tidal (if tidal, check one of the following boxes) □ Lunar □ Both Is the assessment area on a coastal island? □ Yes ⊠ No Does the assessment area experience overbank flooding during normal rainfall conditions? □ Yes ⊠ 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ <
What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wind Both Is the assessment area on a coastal island? Yes Yes No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS A A Not severely altered B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wind Both Is the assessment area on a coastal island? Yes Yes No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS A A Not severely altered B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wind Both Is the assessment area on a coastal island? Yes Yes No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS A A Not severely altered B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wind Both Is the assessment area on a coastal island? Yes Yes No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS A A Not severely altered B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wind Both Is the assessment area on a coastal island? Yes Yes No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS A A Not severely altered B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
What type of natural stream is associated with the wetland, if any? (check all that apply) Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wind Both Is the assessment area on a coastal island? Yes Yes No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS A A Not severely altered B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
Blackwater Brownwater Tidal (if tidal, check one of the following boxes) Lunar Wind Both Is the assessment area on a coastal island? Yes No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS A A B Severely altered B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
Brownwater □ Tidal (if tidal, check one of the following boxes) □ Lunar Wind □ Both Is the assessment area on a coastal island? □ Yes ○ No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? □ Yes ○ No Does the assessment area experience overbank flooding during normal rainfall conditions? □ Yes ○ No 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ <
 Tidal (if tidal, check one of the following boxes) □ Lunar □ Wind □ Both Is the assessment area on a coastal island? □ Yes ○ No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? □ Yes ○ No Does the assessment area experience overbank flooding during normal rainfall conditions? □ Yes ○ No 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS □A □A Not severely altered ○B ○B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
Is the assessment area on a coastal island? ☐ Yes ⊠ No Is the assessment area's surface water storage capacity or duration substantially altered by beaver? ☐ Yes ⊠ No Does the assessment area experience overbank flooding during normal rainfall conditions? ☐ Yes ⊠ No 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS ☐ A ☐ A Not severely altered ⊠B ⊠B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
Is the assessment area's surface water storage capacity or duration substantially altered by beaver? Yes No Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS □A □A Not severely altered ⊠B ⊠B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
Does the assessment area experience overbank flooding during normal rainfall conditions? Yes No 1. Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS □A □A Not severely altered ⊠B ⊠B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
 Ground Surface Condition/Vegetation Condition – assessment area condition metric Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS □A □A Not severely altered ⊠B ⊠B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
 Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS □A □A Not severely altered ○B ○B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
 Check a box in each column. Consider alteration to the ground surface (GS) in the assessment area and vegetation structure (VS) in the assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS □A □A Not severely altered ○B ○B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
 assessment area. Compare to reference wetland if applicable (see User Manual). If a reference is not applicable, then rate the assessment area based on evidence an effect. GS VS A A A Not severely altered B B B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
⊠B ⊠B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
B Severely altered over a majority of the assessment area (ground surface alteration examples: vehicle tracks, excessive sedimentation, fire-plow lanes, skidder tracks, bedding, fill, soil compaction, obvious pollutants) (vegetation structure
diversity [if appropriate], hydrologic alteration)
2. Surface and Sub-Surface Storage Capacity and Duration – assessment area condition metric
Check a box in each column. Consider surface storage capacity and duration (Surf) and sub-surface storage capacity and duration (Sub).
Consider both increase and decrease in hydrology. A ditch < 1 foot deep is considered to affect surface water only, while a ditch > 1 foot deep is expected to affect both surface and sub-surface water. Consider tidal flooding regime, if applicable.
$\Box A$ $\Box A$ Water storage capacity and duration are not altered.
B Water storage capacity or duration are altered, but not substantially (typically, not sufficient to change vegetation).
C Water storage capacity or duration are substantially altered (typically, alteration sufficient to result in vegetation change)
(examples: draining, flooding, soil compaction, filling, excessive sedimentation, underground utility lines).
3. Water Storage/Surface Relief – assessment area/wetland type condition metric (skip for all marshes)
Check a box in each column. Select the appropriate storage for the assessment area (AA) and the wetland type (WT).
AA WT 3a. $\Box A \Box A$ Majority of wetland with depressions able to pond water > 1 deep
3a. □A □A Majority of wetland with depressions able to pond water > 1 deep □B □B Majority of wetland with depressions able to pond water 6 inches to 1 foot deep
\Box
$\square O$ $\square O$ Depressions able to poind water < 3 inches deep
3b. A Evidence that maximum depth of inundation is greater than 2 feet

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΠA ≥ 50 feet
 - □в From 30 to < 50 feet
 - □с From 15 to < 30 feet
 - ΜD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ⊠G ΠG From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable) ≥ 500 acres

ΠA

□в

ШE

ΠF

 \boxtimes I

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н ШΗ □н From 0.5 to < 1 acre
 - N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□в	□В	From 100 to < 500 acres
□c	□С	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0	
IR	1	tr

1 to 4 ⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland F	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)			NO
Presence of regulatory considerations (Y/N) YES			YES
Wetland is intensively managed (Y/N) YES			YES
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)			YES
Assessment area is substantially altered by beaver (Y/N)			NO
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N) NO			NO
Assessment area is on a coastal island (Y/N) NO			NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
Function Rating Summa	ary		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating Low

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5	
-----------------------------------	--

USACE AID #		NCDWR#	
Project Name Bug Headwaters Mitigation Site Date of Evaluation 9/11/2020			9/11/2020
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	
Wetland Type	Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregion	Piedmont	Nearest Named Water Body	Big Bugaboo Creek
River Basin	Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	
County	Wilkes	NCDWR Region	Winston-Salem
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.322475, -80.984803
	affecting the assessment area (may no	ot be within the assessment area) tressors is apparent. Consider departure f	rom reference, if appropriate, in
		include, but are not limited to the following.	rom reference, il appropriate, in
	odifications (examples: ditches, dams, b		
 Surface and su 	b-surface discharges into the wetland (ex	amples: discharges containing obvious pollu	tants, presence of nearby septic
	ound storage tanks (USTs), hog lagoons,		
		lity, insect damage, disease, storm damage	, sait intrusion, etc.)
 Habitat/plant co 	ommunity alteration (examples: mowing,	cieai -cutting, exotics, etc.)	
Is the assessment area	intensively managed? Xes	No	
		aluated? $igtriangleq$ Yes \Box No If Yes, check all the	at apply to the assessment area.
Anadromous fis	sn cted species or State endangered or thre	estened species	
NCDWR rinaria	an buffer rule in effect		
Abuts a Primar	y Nursery Area (PNA)		
Publicly owned			
	f Coastal Management Area of Environm		_
Abuts a stream		upplemental classifications of HQW, ORW, o	or Trout
Designated NC	NHP reference community	ated atraces	
Abuts a 303(d)	-listed stream or a tributary to a 303(d)-lis	sted stream	
What type of natural st	ream is associated with the wetland, if	any? (check all that apply)	
Blackwater			
Brownwater			
Tidal (if tidal, ch	neck one of the following boxes)	unar 🗌 Wind 🔲 Both	
Is the assessment area	on a coastal island? 🔲 Yes 🛛	No	
Is the assessment area	's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
		ing normal rainfall conditions?	
	ndition/Vegetation Condition – assess		d vogotation at water (1/0) in the
		und surface (GS) in the assessment area ar (see User Manual). If a reference is not ap	
area based on evider		(See User Manual). It a reference is not app	bicable, men fale me assessment
GS VS			
— . —	ot severely altered		
		essment area (ground surface alteration exa	amples: vehicle tracks, excessive
se	edimentation, fire-plow lanes, skidder tra	acks, bedding, fill, soil compaction, obvious	s pollutants) (vegetation structure
		ce, herbicides, salt intrusion [where appropr	iate], exotic species, grazing, less
di	versity [if appropriate], hydrologic alterati	on)	
2. Surface and Sub-Su	Irface Storage Capacity and Duration -	 assessment area condition metric 	
		acity and duration (Surf) and sub-surface sto	prage capacity and duration (Sub)
Consider both increa	se and decrease in hydrology. A ditch \leq	4 1 foot deep is considered to affect surface	water only, while a ditch > 1 foot
		Consider tidal flooding regime, if applicab	
Surf Sub			
	ater storage capacity and duration are no		
		red, but not substantially (typically, not suffi	
		stantially altered (typically, alteration sufficiential statistics) and a statistical statistics and a statistical statistics and a statistical statistics and a statistical statistical statistics and a statistical statistical statistics are statistical statistic	
	xamples: draining, flooding, soil compact	ion, filling, excessive sedimentation, underg	irouna utility illes).
3. Water Storage/Surfa	ace Relief – assessment area/wetland	type condition metric (skip for all marshe	es)
	column . Select the appropriate storage	e for the assessment area (AA) and the wet	and type (WT).
AA WT			
	a faculture and consultance of the 100 million of the 100 million of the 100 million of the 100 million of the		
	ajority of wetland with depressions able t		
	ajority of wetland with depressions able t	o pond water 6 inches to 1 foot deep	
	ajority of wetland with depressions able t ajority of wetland with depressions able t	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	
	ajority of wetland with depressions able t	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep deep	

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
⊔⊑ 4b. □A ⊠B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΠA ≥ 50 feet
 - □в From 30 to < 50 feet
 - □с From 15 to < 30 feet
 - ΜD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT WC

ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF □G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

ΠA

□в

ΠF

⊠J

Πĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD ШE
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н □н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΜJ ΠJ From 0.01 to < 0.1 acre ШK
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□В	□В	From 100 to < 500 acres
□c	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
ПΒ	1 to

1 to 4 ⊠c

5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Site Name Wetland G	Date of Assessment	9/11/2020)		
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands		
Notes on Field Assessment Form (Y/N) NO					
Presence of regulatory considerations (Y/N)					
Wetland is intensively managed (Y/N)	YES				
Assessment area is located within 50 feet of a natural trib	YES				
Assessment area is substantially altered by beaver (Y/N)	NO				
Assessment area experiences overbank flooding during n	NO				
Assessment area is on a coastal island (Y/N)			NO		

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-surface Storage and Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE AID #		NCDWR#	
Project Nam	e Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicant/Owner Nam		Wetland Site Name	Wetland H
Wetland Typ	e Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregic		Nearest Named Water Body	Big Bugaboo Creek
River Bas		USGS 8-Digit Catalogue Unit	Yadkin 03040101
Coun		NCDWR Region	Winston-Salem
🗌 Yes 🗌 N	o Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.318160, -80.987255
	s affecting the assessment area (may no	-	rom reference, if appropriate, in
		stressors is apparent. Consider departure f include, but are not limited to the following.	form reference, il appropriate, in
	modifications (examples: ditches, dams, b		
		camples: discharges containing obvious pollu	itants, presence of nearby septic
	ground storage tanks (USTs), hog lagoons		
		lity, insect damage, disease, storm damage	, salt intrusion, etc.)
 Habitat/plant 	community alteration (examples: mowing	clear-cutting, exotics, etc.)	
Is the assessment are	ea intensively managed? 🛛 Yes 🗌] No	
		valuated? ⊠Yes □No If Yes, check all that	at apply to the assessment area.
Anadromous	tected species or State endangered or three	eatened species	
	rian buffer rule in effect		
Abuts a Prim	ary Nursery Area (PNA)		
Publicly owne			
N.C. Division	of Coastal Management Area of Environm		_
Abuts a strea		upplemental classifications of HQW, ORW, o	or Trout
Designated N	ICNHP reference community		
Abuts a 303(d)-listed stream or a tributary to a 303(d)-li	sted stream	
What type of natural	stream is associated with the wetland, i	f any? (check all that apply)	
Blackwater			
Brownwater			
Tidal (if tidal,	check one of the following boxes)	unar 🔲 Wind 🔲 Both	
Is the assessment are	ea on a coastal island? 🔲 Yes 🖂	No	
		uration substantially altered by beaver?	🗌 Yes 🖾 No
Does the assessment	t area experience overbank flooding du	ring normal rainfall conditions? 🛛 Yes	🛛 No
1. Ground Surface C	ondition/Vegetation Condition – assess	ment area condition metric	
	_		λ dynamic tructure (λ (C) in the
		und surface (GS) in the assessment area ar (see User Manual). If a reference is not app	
area based on evid	ence an effect		
GS VS	ence an enect.		
	Not severely altered		
		essment area (ground surface alteration exa	mples: vehicle tracks, excessive
		acks, bedding, fill, soil compaction, obvious	
	alteration examples: mechanical disturbar	nce, herbicides, salt intrusion [where appropr	
	diversity [if appropriate], hydrologic alterati	on)	
2. Surface and Sub-	Surface Storage Capacity and Duration	 assessment area condition metric 	
		acity and duration (Surf) and sub-surface sto	rade capacity and duration (Sub)
		1 foot deep is considered to affect surface	
deep is expected to	affect both surface and sub-surface wate	r. Consider tidal flooding regime, if applicab	e.
Surf Sub			
	Water storage capacity and duration are n	ot altered.	
⊠B ⊠B	Water storage capacity or duration are alte	ered, but not substantially (typically, not suffice	
	Water storage capacity or duration are sub	ostantially altered (typically, alteration sufficient	ent to result in vegetation change)
		tion, filling, excessive sedimentation, underg	
	(examples: draining, flooding, soil compac		,
3. Water Storage/Su	rface Relief – assessment area/wetland	type condition metric (skip for all marshe	es)
3. Water Storage/Su Check a box in ea	rface Relief – assessment area/wetland		es)
3. Water Storage/Su Check a box in ea AA WT	rface Relief – assessment area/wetland ch column. Select the appropriate storag	type condition metric (skip for all marshe e for the assessment area (AA) and the wet	es)
 Water Storage/Sur Check a box in ea AA WT 3a. □A □A 	rface Relief – assessment area/wetland ch column. Select the appropriate storag Majority of wetland with depressions able	type condition metric (skip for all marshe e for the assessment area (AA) and the wet to pond water > 1 deep	es)
 Water Storage/Sur Check a box in ea AA WT 3a. A A B B 	rface Relief – assessment area/wetland ch column. Select the appropriate storag Majority of wetland with depressions able Majority of wetland with depressions able	type condition metric (skip for all marshe e for the assessment area (AA) and the wet to pond water > 1 deep to pond water 6 inches to 1 foot deep	es)
 Water Storage/Sur Check a box in ea AA WT 3a. A A B B C C 	rface Relief – assessment area/wetland ch column. Select the appropriate storag Majority of wetland with depressions able	type condition metric (skip for all marshe e for the assessment area (AA) and the wet to pond water > 1 deep to pond water 6 inches to 1 foot deep to pond water 3 to 6 inches deep	es)
 Water Storage/Sur Check a box in ea AA WT 3a. A A B B C C C D ØD 	rface Relief – assessment area/wetland ch column. Select the appropriate storag Majority of wetland with depressions able Majority of wetland with depressions able Majority of wetland with depressions able	type condition metric (skip for all marshe e for the assessment area (AA) and the wet to pond water > 1 deep to pond water 6 inches to 1 foot deep to pond water 3 to 6 inches deep s deep	es)

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
⊔⊑ 4b. □A ⊠B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΜA ≥ 50 feet
 - □в From 30 to < 50 feet
 - ⊡c From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT WC

ΠA ≥ 100 feet Πв Πв From 80 to < 100 feet ⊠C ⊠C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ∃G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable) ≥ 500 acres

ΠA

□в

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □с DD From 25 to < 50 acres DD
- ШE ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- ΠF □G □G □G From 1 to < 5 acres
- ШH ⊠н □н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	A	≥ 500 acres
□в	□В	From 100 to < 500 acres
□C	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0	
ПΒ	1 to	

1 to 4 ⊠c

5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

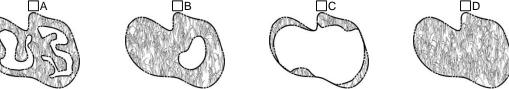
011010101	e in an ep	
сапору □⊠□ Сапору	WT □A ⊠B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ U B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Site Name Wetland H	Date of Assessment	9/11/2020)	
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands	
Notes on Field Assessment Form (Y/N)				
Presence of regulatory considerations (Y/N)				
Wetland is intensively managed (Y/N)				
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)				
Assessment area is substantially altered by beaver (Y/N)				
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)				
Assessment area is on a coastal island (Y/N)			NO	

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-surface Storage and Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE AID #		NCDWR#	
Project Name	Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	Wetland I
Wetland Type	Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregion	Piedmont	Nearest Named Water Body	Big Bugaboo Creek
River Basin	Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	
County	Wilkes	NCDWR Region	Winston-Salem
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.321541, -80.985054
Please circle and/or mak		t be within the assessment area) tressors is apparent. Consider departure f include, but are not limited to the following.	rom reference, if appropriate, in
 Hydrological me Surface and sul tanks, undergro Signs of vegeta 	odifications (examples: ditches, dams, b b-surface discharges into the wetland (ex und storage tanks (USTs), hog lagoons, tion stress (examples: vegetation morta	eaver dams, dikes, berms, ponds, etc.) amples: discharges containing obvious pollu etc.) lity, insect damage, disease, storm damage	
Habitat/plant cc Is the assessment area	mmunity alteration (examples: mowing, intensively managed? 🛛 Yes 🗌	clear-cutting, exotics, etc.)	
		aluated? ⊠Yes □No If Yes, check all tha	at apply to the assessment area.
Anadromous fis	cted species or State endangered or thre	atened species	
	n buffer rule in effect / Nursery Area (PNA)		
Publicly owned			
N.C. Division of	Coastal Management Area of Environm		_
Abuts a stream		upplemental classifications of HQW, ORW, o	or Trout
Abuts a 303(d)-	NHP reference community listed stream or a tributary to a 303(d)-lis	ted stream	
_ ()			
	eam is associated with the wetland, if	any? (check all that apply)	
Blackwater			
Tidal (if tidal, ch	eck one of the following boxes)	unar 🗌 Wind 🔲 Both	
Is the assessment area			
		uration substantially altered by beaver?	☐ Yes ⊠ No
Does the assessment a	rea experience overbank flooding dur	ing normal rainfall conditions? 🗌 Yes	No No
1. Ground Surface Cor	dition/Vegetation Condition – assess	ment area condition metric	
	mpare to reference wetland if applicable	und surface (GS) in the assessment area ar (see User Manual). If a reference is not app	
🗌 A 🔲 A No	ot severely altered		
se	dimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa icks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on)	s pollutants) (vegetation structure
2. Surface and Sub-Su	rface Storage Capacity and Duration -	- assessment area condition metric	
Check a box in each	column. Consider surface storage capa	acity and duration (Surf) and sub-surface sto	prage capacity and duration (Sub).
Consider both increas	se and decrease in hydrology. A ditch ≤	1 foot deep is considered to affect surface . Consider tidal flooding regime, if applicable	water only, while a ditch > 1 foot
□A □A WA ⊠B ⊠B WA □C □C WA	ater storage capacity or duration are sub	red, but not substantially (typically, not suffice stantially altered (typically, alteration sufficient suffic	ent to result in vegetation change)
		ion, filling, excessive sedimentation, underg	
		type condition metric (skip for all marshe	•
Check a box in each AA WT	column. Select the appropriate storage	e for the assessment area (AA) and the wetl	land type (WT).
3a. □A □A Ma □B □B Ma □C □C Ma	ajority of wetland with depressions able to ajority of wetland with depressions able to ajority of wetland with depressions able to pressions able to pond water < 3 inchest	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	
	at maximum depth of inundation is great	•	

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
⊔⊑ 4b. □A ⊠B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΠA ≥ 50 feet
 - □в From 30 to < 50 feet
 - □с From 15 to < 30 feet
 - ΜD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT WC

ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF □G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable) ≥ 500 acres

ΠA

□в

ШE

ΠF

 \boxtimes I

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н □н From 0.5 to < 1 acre
 - N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□в	□В	From 100 to < 500 acres
□c	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0	
IR	1	tr

1 to 4 ⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Site Name Wetland I	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)		-	NO
Presence of regulatory considerations (Y/N)		-	YES
Wetland is intensively managed (Y/N) YES			
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N) YES			YES
Assessment area is substantially altered by beaver (Y/N) NO			NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)	-	NO
Assessment area is on a coastal island (Y/N)		_	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-surface Storage and Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE AID #	·····p•····•	NCDWR#	
Project Name	Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	Wetland J
Wetland Type		Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregion		Nearest Named Water Body	Big Bugaboo Creek
River Basin		USGS 8-Digit Catalogue Unit	
County		NCDWR Region	Winston-Salem
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.317495, -80.988696
Please circle and/or ma		t be within the assessment area) tressors is apparent. Consider departure f include, but are not limited to the following.	rom reference, if appropriate, in
 Hydrological m Surface and su tanks, undergr 	nodifications (examples: ditches, dams, b ib-surface discharges into the wetland (ex ound storage tanks (USTs), hog lagoons,	eaver dams, dikes, berms, ponds, etc.) amples: discharges containing obvious pollu	
 Habitat/plant c 	ommunity alteration (examples: mowing,	clear-cutting, exotics, etc.)	, sait initiusion, etc. <i>j</i>
		No	
Regulatory Considerat		aluated? XYes No If Yes, check all that	at apply to the assessment area.
Federally prote	ected species or State endangered or thre an buffer rule in effect ry Nursery Area (PNA)	atened species	
Publicly owned			
N.C. Division o	of Coastal Management Area of Environm		ar Trout
Designated NC	NHP reference community	upplemental classifications of HQW, ORW, o	or i rout
Abuts a 303(d)	-listed stream or a tributary to a 303(d)-list	sted stream	
What type of natural st	ream is associated with the wetland, if	any? (check all that apply)	
Blackwater			
Brownwater			
	heck one of the following boxes)		
Is the assessment area	a on a coastal island? 🔲 Yes 🖂 🛛	No	
Is the assessment area	a's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
Does the assessment a	area experience overbank flooding dur	ing normal rainfall conditions? 🛛 Yes	🛛 No
1. Ground Surface Co	ndition/Vegetation Condition – assess	ment area condition metric	
	_	und surface (GS) in the assessment area ar	d vegetation structure (VS) in the
	ompare to reference wetland if applicable	(see User Manual). If a reference is not app	
🖾 A 🗆 A N	ot severely altered		
s	edimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa icks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on)	s pollutants) (vegetation structure
	urface Storage Capacity and Duration -		
		acity and duration (Surf) and sub-surface sto	prage capacity and duration (Sub).
Consider both increa	ise and decrease in hydrology. A ditch ≤	1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab	water only, while a ditch > 1 foot
🖾 A 🗌 A 🛛	/ater storage capacity and duration are no		piont to change vegetation)
	later storage capacity or duration are sub	red, but not substantially (typically, not suffices stantially altered (typically, alteration sufficient ion, filling, excessive sedimentation, underg	ent to result in vegetation change)
3. Water Storage/Surf	ace Relief – assessment area/wetland t	type condition metric (skip for all marshe	es)
-		e for the assessment area (AA) and the wet	•
	lajority of wetland with depressions able to	o pond water > 1 deep	
	lajority of wetland with depressions able to		
	lajority of wetland with depressions able to		
	epressions able to pond water < 3 inches		
		er than 2 feet	

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
⊔⊑ 4b. □A ⊠B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΠA ≥ 50 feet
 - □в From 30 to < 50 feet
 - ⊠C From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF □G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

ΠA

□в

ΠF

⊠J

Πĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD ШE
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н ⊟н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΜJ ΠJ From 0.01 to < 0.1 acre ШK
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ΠА
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□В	□В	From 100 to < 500 acres
□c	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
ПΒ	1 to

1 to 4 ⊠c

5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Site Name Wetland J	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)		-	NO
Presence of regulatory considerations (Y/N)			YES
Wetland is intensively managed (Y/N) YES			YES
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)			YES
Assessment area is substantially altered by beaver (Y/N) NO			NO
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N) NO			NO
Assessment area is on a coastal island (Y/N) NO			NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-surface Storage and Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5	
-----------------------------------	--

USACE AID #		NCDWR#	
Project Name	Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	Wetland K
Wetland Type	Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregion	Piedmont	Nearest Named Water Body	Big Bugaboo Creek
River Basin	Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	
County	Wilkes	NCDWR Region	Winston-Salem
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.318052, -80.988862
	affecting the assessment area (may no	t be within the assessment area) tressors is apparent. Consider departure f	rom reference, if appropriate, in
		include, but are not limited to the following.	
	odifications (examples: ditches, dams, b		
 Surface and su 	b-surface discharges into the wetland (ex	amples: discharges containing obvious pollu	Itants, presence of nearby septic
	ound storage tanks (USTs), hog lagoons,		
		lity, insect damage, disease, storm damage	, salt intrusion, etc.)
 Habitat/plant co 	ommunity alteration (examples: mowing,	clear-cutting, exotics, etc.)	
Is the assessment area	intensively managed? Xes	No	
		aluated? ⊠Yes □No If Yes, check all tha	at apply to the assessment area.
Anadromous fis	cted species or State endangered or thre	atened species	
NCDWR riparia	an buffer rule in effect		
Abuts a Primar	y Nursery Area (PNA)		
Publicly owned	property		
	f Coastal Management Area of Environm		
Abuts a stream		upplemental classifications of HQW, ORW, o	or Trout
Designated NC	NHP reference community		
Abuts a 303(d)	-listed stream or a tributary to a 303(d)-lis	sieu siream	
	ream is associated with the wetland, if	any? (check all that apply)	
Blackwater			
Brownwater	and any of the falls that is a second second		
Tidal (if tidal, ch	neck one of the following boxes)	unar 🗌 Wind 🔲 Both	
Is the assessment area	on a coastal island? 🔲 Yes 🛛 I	No	
Is the assessment area	's surface water storage capacity or d	uration substantially altered by beaver?	🗆 Yes 🖾 No
		ing normal rainfall conditions?	
	ndition/Vegetation Condition – assess		<u> </u>
	_	und surface (GS) in the assessment area ar	nd vegetation structure (VS) in the
		(see User Manual). If a reference is not app	
area based on evider		too coor manually. In a relevence to not app	
GS VS			
	ot severely altered		
🖾 B 🖾 B Se	everely altered over a majority of the asso	essment area (ground surface alteration exa	
		cks, bedding, fill, soil compaction, obvious	
		ce, herbicides, salt intrusion [where appropr	iate], exotic species, grazing, less
di	versity [if appropriate], hydrologic alteration	on)	
2. Surface and Sub-Su	Irface Storage Capacity and Duration -	 assessment area condition metric 	
		acity and duration (Surf) and sub-surface sto	prage capacity and duration (Sub)
Consider both increa	se and decrease in hydrology. A ditch \leq	1 foot deep is considered to affect surface	water only, while a ditch > 1 foot
		. Consider tidal flooding regime, if applicab	
Surf Sub			
	ater storage capacity and duration are no		
		red, but not substantially (typically, not suffi	
		stantially altered (typically, alteration sufficiential standard)	
	xamples: oraining, flooding, soil compact	ion, filling, excessive sedimentation, underg	rouna utility illes).
3. Water Storage/Surfa	ace Relief – assessment area/wetland	type condition metric (skip for all marshe	es)
	column . Select the appropriate storage	e for the assessment area (AA) and the wet	and type (WT).
AA WT			
	ajority of wetland with depressions able to		
	ajority of wetland with depressions able to		
	ajority of wetland with depressions able to	o ponu water o to o inches deep	
		doon	
	epressions able to pond water < 3 inches that maximum depth of inundation is great	•	

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
⊔⊑ 4b. □A ⊠B	Soil ribbon < 1 inch Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet ΠA
 - ⊠В From 30 to < 50 feet
 - ПС From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ≥ 100 feet Πв Πв From 80 to < 100 feet ⊠C ⊠C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ∃G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable)

ΠA

□в

 \boxtimes I

ΠJ

Πĸ

Пĸ

- ΠA ΠA ≥ 500 acres □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD
- ШE ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- ΠF □G □G □G From 1 to < 5 acres
- □н □н □н From 0.5 to < 1 acre
 - N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [·]	≥ 500 acres
□в	□В	From 100 to < 500 acres
□C	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	⊠E	< 10 acres
⊠F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

- ΠA 0
- ⊠в 1 to 4 ПС

5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

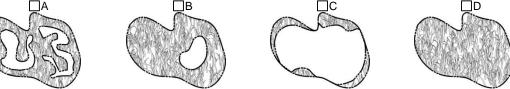
onaotar	e ini anop	
AA A□ Canopy C	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story	□A	Dense mid-story/sapling layer
B□	□B	Moderate density mid-story/sapling layer
B□	⊠C	Mid-story/sapling layer sparse or absent
Shrub	□A	Dense shrub layer
□B	□B	Moderate density shrub layer
SC	⊠C	Shrub layer sparse or absent
e □A	□A	Dense herb layer
B	⊠B	Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Site Name Wetland K	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)			NO
Presence of regulatory considerations (Y/N)			YES
Wetland is intensively managed (Y/N) YES			YES
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N) YES			YES
Assessment area is substantially altered by beaver (Y/N) NO			NO
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N) NO			NO
Assessment area is on a coastal island (Y/N) NO			NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention	Condition	LOW
	Sub-surface Storage and Retention	Condition	LOW
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ıry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

	SACE AID #		NCDWR#	
	Project Nar	ne Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Ap	pplicant/Owner Nar	ne Wildlands Engineering	Wetland Site Name	Wetland L
Wetland Type Headwater Forest Assessor Name/Organization C. Neaves/Wildlar			C. Neaves/Wildlands	
	Level III Ecoregi	on Piedmont	Nearest Named Water Body	Big Bugaboo Creek
	River Ba	sin Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	Yadkin 03040101
	Cou		NCDWR Region	Winston-Salem
	🛛 Yes 🔲 I	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.318091, -80.989375
Ple	ease circle and/or r	rs affecting the assessment area (may no nake note on the last page if evidence of s ce, within 10 years). Noteworthy stressors	tressors is apparent. Consider departure f	rom reference, if appropriate, in
	 Hydrologica Surface and tanks, under 	modifications (examples: ditches, dams, b sub-surface discharges into the wetland (ex ground storage tanks (USTs), hog lagoons, letation stress (examples: vegetation morta	eaver dams, dikes, berms, ponds, etc.) amples: discharges containing obvious pollu etc.)	
	Habitat/plan	t community alteration (examples: mowing,	clear-cutting, exotics, etc.)	
			No	
Re		rations - Were regulatory considerations ev	aluated? <a>Yes No If Yes, check all the	it apply to the assessment area.
	NCDWR rip	otected species or State endangered or thre arian buffer rule in effect nary Nursery Area (PNA)	eatened species	
	Publicly owr		ental Concern (AEC) (including buffer)	
	Designated	am with a NCDWQ classification of SA or su NCNHP reference community		or Trout
		(d)-listed stream or a tributary to a 303(d)-lis stream is associated with the wetland, if		
	Blackwater Brownwater			
	Tidal (if tidal	, check one of the following boxes)		
ls t	the assessment a	rea on a coastal island? 🔲 Yes 🛛 🛛	No	
ls t	the assessment a	rea's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
		nt area experience overbank flooding dur		
1.	Ground Surface	Condition/Vegetation Condition – assess	ment area condition metric	
	assessment area.	ach column. Consider alteration to the grou		
		Compare to reference wetland if applicable dence an effect.	(see User Manual). If a reference is not app	blicable, then rate the assessment
	GS VS	dence an effect.	(see User Manual). If a reference is not app	licable, then rate the assessment
		dence an effect. Not severely altered Severely altered over a majority of the asso sedimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa icks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr	mples: vehicle tracks, excessive pollutants) (vegetation structure
	GS VS □A ⊠A ⊠B □B	dence an effect. Not severely altered Severely altered over a majority of the asse sedimentation, fire-plow lanes, skidder tra alteration examples: mechanical disturban diversity [if appropriate], hydrologic alteration	essment area (ground surface alteration exa icks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on)	mples: vehicle tracks, excessive pollutants) (vegetation structure
2.	GS VS □A ⊠A ⊠B □B Surface and Sub-	dence an effect. Not severely altered Severely altered over a majority of the asso sedimentation, fire-plow lanes, skidder tra alteration examples: mechanical disturban diversity [if appropriate], hydrologic alteration Surface Storage Capacity and Duration -	essment area (ground surface alteration exa icks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on) - assessment area condition metric	amples: vehicle tracks, excessive pollutants) (vegetation structure iate], exotic species, grazing, less
2.	GS VS ☐A △A ⊠B ☐B Surface and Sub- Check a box in ea Consider both incr deep is expected to	dence an effect. Not severely altered Severely altered over a majority of the asse sedimentation, fire-plow lanes, skidder tra alteration examples: mechanical disturban diversity [if appropriate], hydrologic alteration	essment area (ground surface alteration exa ticks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on) - assessment area condition metric acity and duration (Surf) and sub-surface sto i 1 foot deep is considered to affect surface	imples: vehicle tracks, excessive pollutants) (vegetation structure iate], exotic species, grazing, less prage capacity and duration (Sub). water only, while a ditch > 1 foot
2.	GS VS A A B B Surface and Sub- Check a box in ea Consider both incl	dence an effect. Not severely altered Severely altered over a majority of the asso- sedimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban diversity [if appropriate], hydrologic alteration Surface Storage Capacity and Duration - ach column. Consider surface storage capa ease and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water Water storage capacity and duration are no Water storage capacity or duration are alter Water storage capacity or duration are sub- surface storage capacity or duration are sub- surface storage capacity or duration are sub- surface storage capacity or duration are sub- water storage capacity or duration are sub- sub-	essment area (ground surface alteration exa ticks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on) - assessment area condition metric acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface . Consider tidal flooding regime, if applicab	imples: vehicle tracks, excessive pollutants) (vegetation structure iate], exotic species, grazing, less prage capacity and duration (Sub). water only, while a ditch > 1 foot e. cient to change vegetation). ent to result in vegetation change)
2.	GS VS □ A □ A □ B □ B Surface and Sub- Check a box in ea Consider both incl deep is expected for a second sec	dence an effect. Not severely altered Severely altered over a majority of the assess sedimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban diversity [if appropriate], hydrologic alteration Surface Storage Capacity and Duration - ach column. Consider surface storage capa- te ase and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water Water storage capacity and duration are nor Water storage capacity or duration are alter Water storage capacity or duration are sub (examples: draining, flooding, soil compact	essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion] - assessment area condition metric acity and duration (Surf) and sub-surface stor a foot deep is considered to affect surface . Consider tidal flooding regime, if applicab ot altered. red, but not substantially (typically, not sufficient istantially altered (typically, alteration sufficient ion, filling, excessive sedimentation, underg	imples: vehicle tracks, excessive pollutants) (vegetation structure iate], exotic species, grazing, less prage capacity and duration (Sub). water only, while a ditch > 1 foot e. cient to change vegetation). ent to result in vegetation change) round utility lines).
2.	GS VS □A ⊠A ⊠B □B Surface and Sub- Check a box in ea Consider both incl deep is expected to Surf Sub □A □A □B ⊠B ⊠C □C Water Storage/Su Check a box in ea	dence an effect. Not severely altered Severely altered over a majority of the asso- sedimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban diversity [if appropriate], hydrologic alteration Surface Storage Capacity and Duration - ach column. Consider surface storage capa ease and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water Water storage capacity and duration are no Water storage capacity or duration are alter Water storage capacity or duration are sub- surface storage capacity or duration are sub- surface storage capacity or duration are sub- surface storage capacity or duration are sub- water storage capacity or duration are sub- sub-	essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion] - assessment area condition metric acity and duration (Surf) and sub-surface stor a foot deep is considered to affect surface . Consider tidal flooding regime, if applicab ot altered. red, but not substantially (typically, not sufficient stantially altered (typically, alteration sufficient ion, filling, excessive sedimentation, underget type condition metric (skip for all marsher	imples: vehicle tracks, excessive pollutants) (vegetation structure iate], exotic species, grazing, less prage capacity and duration (Sub). water only, while a ditch > 1 foot e. cient to change vegetation). ent to result in vegetation change) round utility lines).
2.	GS VS □A ⊠A ⊠B □B Surface and Sub- Check a box in ea Consider both incr deep is expected to Surf Sub □A □A □B ⊠B ⊠C □C Water Storage/Su	dence an effect. Not severely altered Severely altered over a majority of the assess sedimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturband diversity [if appropriate], hydrologic alteration Surface Storage Capacity and Duration - ach column. Consider surface storage capa- rease and decrease in hydrology. A ditch ≤ o affect both surface and sub-surface water Water storage capacity and duration are nor Water storage capacity or duration are alter Water storage capacity or duration are sub (examples: draining, flooding, soil compact urface Relief – assessment area/wetland	essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion] - assessment area condition metric acity and duration (Surf) and sub-surface stor acity and duration (Surf) and sub-surface stor taltered. red, but not substantially (typically, not sufficient ion, filling, excessive sedimentation, underge type condition metric (skip for all marshed be for the assessment area (AA) and the wet o pond water > 1 deep o pond water 5 inches to 1 foot deep o pond water 3 to 6 inches deep	imples: vehicle tracks, excessive pollutants) (vegetation structure iate], exotic species, grazing, less prage capacity and duration (Sub). water only, while a ditch > 1 foot e. cient to change vegetation). ent to result in vegetation change) round utility lines).

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

4. Soil Texture/Structure - assessment area condition metric (skip for all marshes)

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
	Loamy or clayey gleyed soil Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. ⊠A No peat or muck presence

B A peat or muck presence

5. Discharge into Wetland – opportunity metric

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc.

- Surf Surf
 - A Little or no evidence of pollutants or discharges entering the assessment area
- B
 B
 Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- C Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

6. Land Use - opportunity metric (skip for non-riparian wetlands)

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles <u>and</u> within the watershed draining to the assessment area (5M), <u>and</u> within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв Πв Confined animal operations (or other local, concentrated source of pollutants ПС ⊠C ⊠C ≥ 20% coverage of pasture ØD \geq 20% coverage of agricultural land (regularly plowed land) ΠD ΔD ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

7. Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands)

- 7a. Is assessment area within 50 feet of a tributary or other open water?
 - \boxtimes Yes \square No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- 7b. How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - $\Box A \ge 50$ feet
 - B From 30 to < 50 feet
 - C From 15 to < 30 feet
 - D From 5 to < 15 feet
 - ☑E < 5 feet or buffer bypassed by ditches</p>
- 7c. Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? \Box Yes \boxtimes No
- 7e. Is stream or other open water sheltered or exposed?
 ☑ Sheltered adjacent open water with width < 2500 feet and no regular boat traffic.
 ☑ Exposed adjacent open water with width ≥ 2500 feet or regular boat traffic.
- 8. Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT WC

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ٦G ٦G From 5 to < 15 feet ⊠н ШH < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable)

ΠA

□в

ΠF

ΠJ

⊠κ

⊠κ

- ΠA ΠA ≥ 500 acres □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD ШE
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н □н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ΠА
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□В	⊠В	From 100 to < 500 acres
□C	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
⊠E	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes ⊠No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

⊴A	0
В	1 to 4

ПС 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- ⊠В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ПС Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ☐Yes ⊠No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

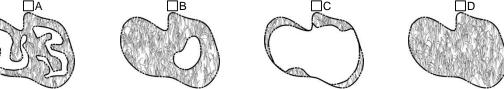
0114014		public above the acceleration area (Firly and the metalling type (TTT) copulation.
Canopy □□□ □□	WT □A □B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B D	□A □B □C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
durhS □C	□A □B □C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
_ಲ □A ₽ □B	□A □B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

□A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 □A Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.

D Both overbank <u>and</u> overland flow are severely altered in the assessment area.

Notes

Wetland Site Name Wetland L	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)		_	NO
Presence of regulatory considerations (Y/N)	YES		
Wetland is intensively managed (Y/N)	YES		
Assessment area is located within 50 feet of a natural trib	-	YES	
Assessment area is substantially altered by beaver (Y/N)			NO
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)			NO
Assessment area is on a coastal island (Y/N)			

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	HIGH
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	YES
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	MEDIUM
	Vegetation Composition	Condition	MEDIUM
Function Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	MEDIUM
		Condition/Opportunity	HIGH
		Opportunity Presence (Y/N)	YES
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

U	SACE AID #		NCDWR#						
	Project Nan	ne Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020					
A	pplicant/Owner Nan	ne Wildlands Engineering	Wetland Site Name	Wetland M					
	Wetland Ty	be Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands					
	Level III Ecoregio	on Piedmont	Nearest Named Water Body	Big Bugaboo Creek					
	River Bas	in Yadkin-PeeDee	USGS 8-Digit Catalogue Unit						
	Cour		NCDWR Region	Winston-Salem					
	🛛 Yes 🗌 N	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.318175, -80.989126					
PI	ease circle and/or n cent past (for instan	ce, within 10 years). Noteworthy stressors	tressors is apparent. Consider departure finclude, but are not limited to the following.	rom reference, if appropriate, in					
	 Surface and tanks, under Signs of veg 	ground storage tanks (USTs), hog lagoons,	amples: discharges containing obvious pollu etc.) lity, insect damage, disease, storm damage						
ls	the assessment ar	ea intensively managed? 🛛 Yes 🗌] No						
Re			aluated? Xes No If Yes, check all that	at apply to the assessment area.					
	Anadromous Federally pro NCDWR ripa Abuts a Prim	s fish otected species or State endangered or thre arian buffer rule in effect nary Nursery Area (PNA)	eatened species						
	Publicly own								
	N.C. Division Abuts a strea Designated I	NCNHP reference community	upplemental classifications of HQW, ORW,	or Trout					
	Abuts a 303	d)-listed stream or a tributary to a 303(d)-list	sted stream						
w	hat type of natural	stream is associated with the wetland, if	f any? (check all that apply)						
		,							
\boxtimes									
	Tidal (if tidal	, check one of the following boxes)	unar 🗌 Wind 🔲 Both						
Is	the assessment ar	ea on a coastal island? 🔲 Yes 🖂	No						
			uration substantially altered by beaver?	🗌 Yes 🖾 No					
D	pes the assessmen	t area experience overbank flooding dur	ring normal rainfall conditions?	🛛 No					
1.	Ground Surface (Condition/Vegetation Condition – assess	ment area condition metric						
••		_	und surface (GS) in the assessment area ar	d vegetation structure (VS) in the					
		Compare to reference wetland if applicable	(see User Manual). If a reference is not ap						
	DA 🖂 A	Not severely altered							
	⊠в □в	sedimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa acks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on)	s pollutants) (vegetation structure					
2	Surface er - Ord								
2.		Surface Storage Capacity and Duration -							
	Consider both incr	ease and decrease in hydrology. A ditch ≤	acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab	water only, while a ditch > 1 foot					
	□A □A □B ⊠B ⊠C □C	Water storage capacity or duration are sub	ot altered. red, but not substantially (typically, not suffi stantially altered (typically, alteration sufficie tion, filling, excessive sedimentation, underg	ent to result in vegetation change)					
2				- /					
э.	Water Storage/Su	rface Relief - assessment area/wetland	type condition metric (skin for all marsh	 Water Storage/Surface Relief – assessment area/wetland type condition metric (skip for all marshes) Check a box in each column. Select the appropriate storage for the assessment area (AA) and the wetland type (WT). 					
	Check a box in ea			•					
	Check a box in ea AA WT 3a. A A B B C C	Ach column. Select the appropriate storage Majority of wetland with depressions able t Majority of wetland with depressions able t Majority of wetland with depressions able t	e for the assessment area (AA) and the wet o pond water > 1 deep o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	•					
	Check a box in ea AA WT 3a. A A B B C C C MD MD	Ach column. Select the appropriate storage Majority of wetland with depressions able t Majority of wetland with depressions able t	e for the assessment area (AA) and the wet o pond water > 1 deep o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep s deep	•					

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

4. Soil Texture/Structure - assessment area condition metric (skip for all marshes)

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
	Loamy or clayey gleyed soil Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. ⊠A No peat or muck presence

B A peat or muck presence

5. Discharge into Wetland – opportunity metric

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc.

- Surf S
 - A Little or no evidence of pollutants or discharges entering the assessment area
- B
 B
 Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- C Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

6. Land Use - opportunity metric (skip for non-riparian wetlands)

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles <u>and</u> within the watershed draining to the assessment area (5M), <u>and</u> within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв ΠВ Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ØD \geq 20% coverage of agricultural land (regularly plowed land) ΠD ΔD ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

7. Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands)

- 7a. Is assessment area within 50 feet of a tributary or other open water?
 - \boxtimes Yes \square No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- 7b. How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - □A ≥ 50 feet
 - B From 30 to < 50 feet
 - C From 15 to < 30 feet
 - D From 5 to < 15 feet
 - ☑E < 5 feet or buffer bypassed by ditches</p>
- 7c. Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed?
 ☑ Sheltered adjacent open water with width < 2500 feet and no regular boat traffic.
 ☑ Exposed adjacent open water with width ≥ 2500 feet or regular boat traffic.
- 8. Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT WC

ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ٦G ٦G From 5 to < 15 feet ⊠н ШH < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

ΠA

□в

ШE

ΠF

ΠJ

⊠κ

⊠κ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
- □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н □н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ΠА
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [`]	≥ 500 acres
□В	⊠В	From 100 to < 500 acres
□c	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
⊠E	ΠE	< 10 acres
□F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

⊴A	0
В	1 to 4

ПС 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- ⊠в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ПС Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ☐Yes ⊠No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

0114014		public above the acceleration area (Firly and the metalling type (TTT) copulation.
Canopy □□□ □□	WT □A □B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B D	□A □B □C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
durhS □C	□A □B □C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
_ಲ □A ₽ □B	□A □B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank <u>and</u> overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Site Name Wetland M	Date of Assessment	9/11/2020	
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlan	ds
Notes on Field Assessment Form (Y/N)		NC)
Presence of regulatory considerations (Y/N)	YE	S	
Wetland is intensively managed (Y/N)	YE	S	
Assessment area is located within 50 feet of a natural trib	YE	S	
Assessment area is substantially altered by beaver (Y/N))
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N))
Assessment area is on a coastal island (Y/N))

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	MEDIUM
	Vegetation Composition	Condition	MEDIUM
Function Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5	
-----------------------------------	--

US	ACE AID) #		NCDWR#	
		roject Nan	ne Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
A		Jwner Nan	ne Wildlands Engineering	Wetland Site Name	Wetland N
'	Ň	etland Ty	be Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
	Level	III Ecoregi	on Piedmont	Nearest Named Water Body	Big Bugaboo Creek
		River Bas	in Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	
		Cour		NCDWR Region	Winston-Salem
	Χ Υ	es 🗌 N	No Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.319484, -80.990220
Ple	ease circl ent past • Hy	e and/or n (for instan /drological	ce, within 10 years). Noteworthy stressors modifications (examples: ditches, dams, b	stressors is apparent. Consider departure f include, but are not limited to the following.	
	tai • Si	nks, under gns of veg	ground storage tanks (USTs), hog lagoons,	, etc.) lity, insect damage, disease, storm damage	
ls f	the asse	ssment ar	ea intensively managed? 🛛 Yes 🗌] No	
	Ar Fe NG At Pu N. At De	adromous derally pro CDWR ripa outs a Prim ublicly own C. Divisior outs a stread esignated l	fish otected species or State endangered or thre arian buffer rule in effect ary Nursery Area (PNA) ed property of Coastal Management Area of Environm am with a NCDWQ classification of SA or su NCNHP reference community	nental Concern (AEC) (including buffer) upplemental classifications of HQW, ORW,	
	AC	outs a 303	d)-listed stream or a tributary to a 303(d)-lis	sted stream	
	Bla Br	ackwater ownwater	check one of the following boxes)		
ls f	the asse	ssment ar	ea on a coastal island? 🔲 Yes 🛛	No	
1				wetten aukatantiallu altanad ku kaana 2	
				uration substantially altered by beaver?	☐ Yes ⊠ No
Do	es the a	ssessmer	t area experience overbank flooding dur	ring normal rainfall conditions?	🛛 No
1.	Ground	Surface (Condition/Vegetation Condition – assess	ment area condition metric	
	Check a assessm	box in ea nent area.	ch column. Consider alteration to the gro	und surface (GS) in the assessment area ar (see User Manual). If a reference is not app	
	ΜA	ΠA	Not severely altered		
	⊟в	⊠В	sedimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa acks, bedding, fill, soil compaction, obvious ace, herbicides, salt intrusion [where appropr on)	s pollutants) (vegetation structure
2.	Surface	and Sub-	Surface Storage Capacity and Duration -	 assessment area condition metric 	
	Conside	r both incr	ease and decrease in hydrology. A ditch ≤	acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface Consider tidal flooding regime, if applicab	water only, while a ditch > 1 foot
	□A □B ⊠C	□A □B ⊠C	Water storage capacity or duration are sub	ot altered. ered, but not substantially (typically, not suffi- ostantially altered (typically, alteration sufficie tion, filling, excessive sedimentation, underg	ent to result in vegetation change)
3.	Water S	torage/Su	rface Relief – assessment area/wetland	type condition metric (skip for all marshe	es)
	Check a	-		e for the assessment area (AA) and the wet	•
			Majority of wetland with depressions able t Majority of wetland with depressions able t Majority of wetland with depressions able t Depressions able to pond water < 3 inches	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	
		Evidoneo	that maximum depth of inundation is great	er than 2 feet	

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

4. Soil Texture/Structure - assessment area condition metric (skip for all marshes)

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. ⊠A No peat or muck presence

B A peat or muck presence

5. Discharge into Wetland – opportunity metric

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc.

- Surf S
 - A Little or no evidence of pollutants or discharges entering the assessment area
- B
 B
 Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- C Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

6. Land Use - opportunity metric (skip for non-riparian wetlands)

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles <u>and</u> within the watershed draining to the assessment area (5M), <u>and</u> within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ПС ПС ПС ≥ 20% coverage of pasture ØD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ⊠Ε ØΕ ⊠Ε ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

7. Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands)

- 7a. Is assessment area within 50 feet of a tributary or other open water?
 - \boxtimes Yes \square No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- 7b. How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - □A ≥ 50 feet
 - B From 30 to < 50 feet
 - C From 15 to < 30 feet
 - D From 5 to < 15 feet
 - E < 5 feet <u>or</u> buffer bypassed by ditches
- 7c. Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? ⊠Yes □No
- 7e. Is stream or other open water sheltered or exposed?
 Sheltered adjacent open water with width < 2500 feet and no regular boat traffic.
 □Exposed adjacent open water with width ≥ 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT WC

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF □G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ⊠Α
- Πв Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable)

ΠA

□в

ΠF

ΠJ

Πĸ

- ΠA ΠA ≥ 500 acres □в ⊡в From 100 to < 500 acres
 - □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD ШE
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н ⊟н From 0.5 to < 1 acre \boxtimes I
 - Ī N From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre Пĸ
 - Πĸ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ПΑ
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□В	□В	From 100 to < 500 acres
□C	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
⊠E	⊠E	< 10 acres
ΠF	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

- ΠA 0
- ⊠в 1 to 4 ПС 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- ⊠В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ПС Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

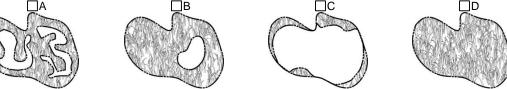
011010101	e in an ep	
AA A□⊠ D⊠ D	WT □A ⊠B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story	□A	Dense mid-story/sapling layer
B⊠	⊠B	Moderate density mid-story/sapling layer
D	□C	Mid-story/sapling layer sparse or absent
Shrub	□A	Dense shrub layer
B	⊠B	Moderate density shrub layer
□C	□C	Shrub layer sparse or absent
e □A	□A	Dense herb layer
B	⊠B	Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

□A Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 □A Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank <u>and</u> overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

Wetland Site Name Wetland N	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)		-	NO
Presence of regulatory considerations (Y/N)		-	YES
Wetland is intensively managed (Y/N)		-	YES
Assessment area is located within 50 feet of a natural trib	utary or other open water (Y/N)	-	YES
Assessment area is substantially altered by beaver (Y/N)		-	NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)	-	NO
Assessment area is on a coastal island (Y/N)		_	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	LOW
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	MEDIUM
Function Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating LOW

NC WAM FIELD ASSESSMENT FORM 0

Accompanies Use	r Manual Version 5.
-----------------	---------------------

USACE AID #	•	NCDWR#		
Project Name Bug Headwaters Mitigation Site Date of Evaluation 9/11/2020			9/11/2020	
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	Wetland O	
Wetland Type Bottomland Hardwood Forest Assessor Name/Organization C. N		C. Neaves/Wildlands		
		Big Bugaboo Creek		
River Basir		USGS 8-Digit Catalogue Unit	Yadkin 03040101	
County		NCDWR Region	Winston-Salem	
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.316069, -80.987749	
Evidence of stressors Please circle and/or ma recent past (for instance	affecting the assessment area (may no ake note on the last page if evidence of s e, within 10 years). Noteworthy stressors nodifications (examples: ditches, dams, b ub-surface discharges into the wetland (ex round storage tanks (USTs), hog lagoons, tation stress (examples: vegetation morta community alteration (examples: mowing, a intensively managed? Yes tions - Were regulatory considerations ev ish ected species or State endangered or thre ian buffer rule in effect ary Nursery Area (PNA) d property of Coastal Management Area of Environm	the within the assessment area) tressors is apparent. Consider departure f include, but are not limited to the following. eaver dams, dikes, berms, ponds, etc.) amples: discharges containing obvious pollu- etc.) lity, insect damage, disease, storm damage clear-cutting, exotics, etc.) No aluated? ⊠Yes □No If Yes, check all that eatened species upplemental classifications of HQW, ORW, of sted stream	rom reference, if appropriate, in utants, presence of nearby septic , salt intrusion, etc.) at apply to the assessment area.	
Brownwater				
	с , <u>–</u>			
Is the assessment are	a on a coastal island? 🗌 Yes 🛛	No		
Is the assessment are	a on a coastal island? 🗌 Yes 🛛		🗆 Yes 🖾 No	
Is the assessment are Is the assessment are	a on a coastal island?	No		
Is the assessment are Is the assessment are Does the assessment	a on a coastal island?	No uration substantially altered by beaver? ing normal rainfall conditions?		
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. C area based on evide	a on a coastal island? a's surface water storage capacity or d area experience overbank flooding dur pondition/Vegetation Condition – assess ch column. Consider alteration to the gro Compare to reference wetland if applicable	No uration substantially altered by beaver? ing normal rainfall conditions?	No No	
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. C area based on evide GS VS	a on a coastal island? Yes a a a coastal island? Yes a coastal of a a coastal island? Yes a a coastal a coastal island? Yes a coastal a	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar	No No	
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. O area based on evide GS VS MA A A B B B S	a on a coastal island? Yes A a's surface water storage capacity or d area experience overbank flooding dur ondition/Vegetation Condition – assess th column. Consider alteration to the gro Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assisted mentation, fire-plow lanes, skidder tra	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropri-	No Move the second structure (VS) in the conductive of the second second structure (VS) in the second second second second second second second second second second s	
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. C area based on evide GS VS ⊠A □A N □B ⊠B S a ac	a on a coastal island? Yes X a's surface water storage capacity or d area experience overbank flooding dur ondition/Vegetation Condition – assess th column. Consider alteration to the gro Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assess endimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban liversity [if appropriate], hydrologic alteration	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exa acks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion]	No Move the second structure (VS) in the conductive of the second second structure (VS) in the second second second second second second second second second second s	
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. Co area based on evide GS VS ⊠A □A N □B ⊠B S Check a box in eac Consider both increade deep is expected to Surf Sub □A □A V	a on a coastal island? ☐ Yes ⊠ a's surface water storage capacity or d area experience overbank flooding dur ondition/Vegetation Condition – assess th column. Consider alteration to the gro Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assi- iedimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban liversity [if appropriate], hydrologic alteration urface Storage Capacity and Duration - h column. Consider surface storage cap- ase and decrease in hydrology. A ditch ≤ affect both surface and sub-surface water Water storage capacity and duration are no	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on) - assessment area condition metric acity and duration (Surf) and sub-surface state is 1 foot deep is considered to affect surface is consider tidal flooding regime, if applicab ot altered.	Mo Move detailed and the set of	
Is the assessment are Is the assessment are Does the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. C area based on evide GS VS ⊠A	a on a coastal island? ☐ Yes a's surface water storage capacity or d area experience overbank flooding dur ondition/Vegetation Condition – assess th column. Consider alteration to the gro Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest the dimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban liversity [if appropriate], hydrologic alteration urface Storage Capacity and Duration - h column. Consider surface storage capa ase and decrease in hydrology. A ditch ≤ affect both surface and sub-surface water Vater storage capacity or duration are nor Vater storage capacity or duration are sub examples: draining, flooding, soil compact	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on) - assessment area condition metric acity and duration (Surf) and sub-surface sto acity and the fooding regime, if applicab ot altered. red, but not substantially (typically, not sufficient stantially altered (typically, alteration sufficient ion, filling, excessive sedimentation, undergr	Mo Move development of the second se	
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. C area based on evide GS VS ⊠A □A N □B ⊠B S ac 2. Surface and Sub-S Check a box in eac Consider both increat deep is expected to Surf Sub □A □A V ⊠B ⊠B V □C □C V	a on a coastal island? ☐ Yes a's surface water storage capacity or d area experience overbank flooding dur ondition/Vegetation Condition – assess th column. Consider alteration to the gro Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assest the dimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban liversity [if appropriate], hydrologic alteration urface Storage Capacity and Duration - h column. Consider surface storage capa ase and decrease in hydrology. A ditch ≤ affect both surface and sub-surface water Vater storage capacity or duration are nor Vater storage capacity or duration are sub examples: draining, flooding, soil compact	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on) - assessment area condition metric acity and duration (Surf) and sub-surface sta c 1 foot deep is considered to affect surface c. Consider tidal flooding regime, if applicab ot altered. red, but not substantially (typically, not sufficient stantially altered (typically, alteration sufficient	Mo Move development of the second se	
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac area based on evide GS VS ⊠A □A N □B ⊠B S Check a box in eac Consider both increat deep is expected to Surf Sub □A □A V ⊗B ⊠B V 0 C □C V (0 3. Water Storage/Surf Check a box in eac	a on a coastal island? ☐ Yes ⊠ a's surface water storage capacity or d area experience overbank flooding dur ondition/Vegetation Condition – assess th column. Consider alteration to the gro Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assi- tedimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban liversity [if appropriate], hydrologic alteration urface Storage Capacity and Duration - h column. Consider surface storage capa- ase and decrease in hydrology. A ditch ≤ affect both surface and sub-surface water Water storage capacity or duration are no Vater storage capacity or duration are sub examples: draining, flooding, soil compact face Relief – assessment area/wetland	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on) - assessment area condition metric acity and duration (Surf) and sub-surface sto acity and the fooding regime, if applicab ot altered. red, but not substantially (typically, not sufficient stantially altered (typically, alteration sufficient ion, filling, excessive sedimentation, undergr	Mo Movegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive s pollutants) (vegetation structure iate], exotic species, grazing, less prage capacity and duration (Sub). water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) pround utility lines). es)	
Is the assessment are Is the assessment are Does the assessment 1. Ground Surface Co Check a box in eac assessment area. Co area based on evide GS VS ⊠A A A N B B B S Check a box in eac Consider both increat deep is expected to Surf Sub A A V B B B V C C C V (0) 3. Water Storage/Surf Check a box in eac AA WT 3a. A A A B B B C C C N	a on a coastal island? ☐ Yes ⊠ a's surface water storage capacity or d area experience overbank flooding dur ondition/Vegetation Condition – assess th column. Consider alteration to the gro Compare to reference wetland if applicable ence an effect. Not severely altered Severely altered over a majority of the assi- tedimentation, fire-plow lanes, skidder tra- alteration examples: mechanical disturban liversity [if appropriate], hydrologic alteration urface Storage Capacity and Duration - h column. Consider surface storage capa- ase and decrease in hydrology. A ditch ≤ affect both surface and sub-surface water Water storage capacity or duration are no Vater storage capacity or duration are sub examples: draining, flooding, soil compact face Relief – assessment area/wetland	No uration substantially altered by beaver? ing normal rainfall conditions? Yes ment area condition metric und surface (GS) in the assessment area ar (see User Manual). If a reference is not app essment area (ground surface alteration exa tacks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where approprion) - assessment area condition metric acity and duration (Surf) and sub-surface states i foot deep is considered to affect surface c. Consider tidal flooding regime, if applicab to taltered. red, but not substantially (typically, not sufficient tion, filling, excessive sedimentation, underge type condition metric (skip for all marshe e for the assessment area (AA) and the wet to pond water > 1 deep to pond water 3 to 6 inches to 1 foot deep to pond water 3 to 6 inches deep	Mo Movegetation structure (VS) in the plicable, then rate the assessment amples: vehicle tracks, excessive s pollutants) (vegetation structure iate], exotic species, grazing, less prage capacity and duration (Sub). water only, while a ditch > 1 foot le. cient to change vegetation). ent to result in vegetation change) pround utility lines). es)	

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA Пв Πв ΠВ Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ØD \geq 20% coverage of agricultural land (regularly plowed land) ΠD ΔD ⊠Ε ØΕ ⊠Ε ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ≥ 50 feet $\boxtimes \mathsf{A}$
 - □в From 30 to < 50 feet
 - ⊡c From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ⊠Α ⊠Α ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ∃G □G From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ⊠Α
- Πв Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

ΠA

□в

ΠF

ΠJ

Πĸ

Пĸ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
- □C From 50 to < 100 acres
- □с DD From 25 to < 50 acres DD ШE
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- ⊠G ⊠G ⊠G From 1 to < 5 acres
- □н □н □н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - Πĸ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ΠА
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□В	□В	From 100 to < 500 acres
□c	⊠C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	□F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

]A	0
٦R	1 to

1 to 4 ⊠C

5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- ⊠В Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ПС Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

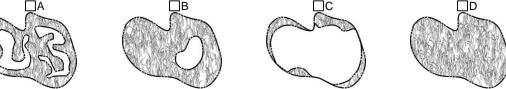
on aoran	o in an op	
AA A□⊠ D⊠⊠ C	WT □A ⊠B □C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B⊠ D	□A ⊠B □C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A ⊠B □C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
ი □A ₽ □B	□A □B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- $\Box C$ Majority of canopy trees are < 6 inches DBH or no trees.


20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank and overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland O	Site Name Wetland O Date of Assessment 9/11/2020		
Wetland Type Bottomland Hardwood Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)			NO
Presence of regulatory considerations (Y/N)			YES
Wetland is intensively managed (Y/N) YES			YES
Assessment area is located within 50 feet of a natural tributary or other open water (Y/N)			YES
Assessment area is substantially altered by beaver (Y/N)		NO	
Assessment area experiences overbank flooding during normal rainfall conditions (Y/N)		NO	
Assessment area is on a coastal island (Y/N)		-	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	MEDIUM
	Retention	Condition	LOW
Water Quality	Pathogen Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Soluble Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	MEDIUM
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	MEDIUM
unction Rating Summ	nary		
Function		Metrics	Rating
Hydrology		Condition	MEDIUM
Water Quality		Condition	MEDIUM
		Condition/Opportunity	MEDIUM
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating MEDIUM

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE AID #		NCDWR#	
Project Name	Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	Wetland P
Wetland Type	Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregion	Piedmont	Nearest Named Water Body	Big Bugaboo Creek
River Basin	Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	
County	Wilkes	NCDWR Region	Winston-Salem
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.324205, -80.982855
	ffecting the assessment area (may no	ot be within the assessment area) tressors is apparent. Consider departure f	rom reference, if appropriate, in
		include, but are not limited to the following.	ion reference, il appropriate, in
	odifications (examples: ditches, dams, b		
 Surface and sub 	o-surface discharges into the wetland (ex	amples: discharges containing obvious pollu	itants, presence of nearby septic
	und storage tanks (USTs), hog lagoons,		
	tion stress (examples: vegetation morta mmunity alteration (examples: mowing,	lity, insect damage, disease, storm damage	, sait intrusion, etc.)
 Habitat/plant co 	mmunity alteration (examples: mowing,	clear-culling, exolics, etc.)	
Is the assessment area	intensively managed? Xes	No	
Regulatory Consideration		aluated? ⊠Yes □No If Yes, check all tha	at apply to the assessment area.
	ted species or State endangered or thre	eatened species	
NCDWR riparia	n buffer rule in effect		
Abuts a Primary	/ Nursery Area (PNA)		
 Federally protect NCDWR riparia Abuts a Primary Publicly owned N.C. Division of Abuts a stream Designated NCI Abuts a 303(d)- 			
N.C. Division of	Coastal Management Area of Environm		or Trout
Abuts a stream Designated NCI	With a NCDWQ classification of SA of st NHP reference community	upplemental classifications of HQW, ORW,	or i rout
	listed stream or a tributary to a 303(d)-lis	sted stream	
_ ()	, (, ,		
	eam is associated with the wetland, if	any? (check all that apply)	
Blackwater			
Brownwater Tidal (if tidal, ch			
_ ()	eck one of the following boxes)		
Is the assessment area	on a coastal island? 🔲 Yes 🛛 🛛	No	
Is the assessment area'	s surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🖾 No
		ing normal rainfall conditions?	
	dition/Vegetation Condition – assess		ducestation structure (1/0) is it
		und surface (GS) in the assessment area ar	
assessment area. Co area based on eviden		(see User Manual). If a reference is not app	blicable, then rate the assessment
GS VS			
— · · · · · · ·	t severely altered		
	2	essment area (ground surface alteration exa	amples: vehicle tracks, excessive
		acks, bedding, fill, soil compaction, obvious	
alt	eration examples: mechanical disturban	ce, herbicides, salt intrusion [where appropr	
div	versity [if appropriate], hydrologic alteration	on)	
2. Surface and Sub-Su	rface Storage Capacity and Duration -	- assessment area condition metric	
			rade capacity and duration (Sub)
Consider both increase	se and decrease in hydrology A ditch <	acity and duration (Surf) and sub-surface store f 1 foot deep is considered to affect surface	water only while a ditch < 1 foot
		. Consider tidal flooding regime, if applicab	
Surf Sub			
	ater storage capacity and duration are no	ot altered.	
⊠B ⊠B Wa	ater storage capacity or duration are alte	red, but not substantially (typically, not suffi	
		stantially altered (typically, alteration sufficient	
(e)	camples: draining, flooding, soil compact	ion, filling, excessive sedimentation, underg	round utility lines).
3. Water Storage/Surfa	ce Relief – assessment area/wetland t	type condition metric (skip for all marshe	es)
•		e for the assessment area (AA) and the wet	•
AA WT			
3a. 🗌 A 🗍 A Ma			
	ajority of wetland with depressions able to	o pond water > 1 deep	
	ajority of wetland with depressions able t	o pond water 6 inches to 1 foot deep	
□C □C Ma	ajority of wetland with depressions able t ajority of wetland with depressions able t	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	
□C □C Ma	ajority of wetland with depressions able t	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	

 \square B Evidence that maximum depth of inundation is between 1 and 2 feet \square C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

Surf ΠA

□в

- Little or no evidence of pollutants or discharges entering the assessment area
- □A □B Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΠA ≥ 50 feet
 - □в From 30 to < 50 feet
 - ⊡c From 15 to < 30 feet
 - ΠD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ٦G ٦G From 5 to < 15 feet ⊠н ШH < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT WC

FW (if applicable) ≥ 500 acres

ΠA

□в

ШE

ΠF

ΠJ

⊠κ

⊠κ

- ΠA ΠA □в ⊡в From 100 to < 500 acres
- □C From 50 to < 100 acres
- □C DD From 25 to < 50 acres DD
 - ΠE From 10 to < 25 acres ΠE
 - ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н □н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΠJ ΠJ From 0.01 to < 0.1 acre
 - ⊠κ < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ΠА
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA		≥ 500 acres
□В	□В	From 100 to < 500 acres
□c	□C	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0	
IR	1	tr

1 to 4 ⊠c

5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank <u>and</u> overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland P	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)		_	NO
Presence of regulatory considerations (Y/N)		_	YES
Wetland is intensively managed (Y/N)		_	YES
Assessment area is located within 50 feet of a natural trib	utary or other open water (Y/N)	_	YES
Assessment area is substantially altered by beaver (Y/N)		_	NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)	_	NO
Assessment area is on a coastal island (Y/N)		_	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	MEDIUM
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
Function Rating Summary			
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

Overall Wetland Rating LOW

NC WAM FIELD ASSESSMENT FORM Accompanies User Manual Version 5.0

Accompanies User Manual Version 5

USACE AID #		NCDWR#	
Project Name	Bug Headwaters Mitigation Site	Date of Evaluation	9/11/2020
Applicant/Owner Name	Wildlands Engineering	Wetland Site Name	
Wetland Type	Headwater Forest	Assessor Name/Organization	C. Neaves/Wildlands
Level III Ecoregion	Piedmont	Nearest Named Water Body	Big Bugaboo Creek
River Basin	Yadkin-PeeDee	USGS 8-Digit Catalogue Unit	
County	Wilkes	NCDWR Region	Winston-Salem
🛛 Yes 🗌 No	Precipitation within 48 hrs?	Latitude/Longitude (deci-degrees)	36.323557, -80.982430
Please circle and/or mak recent past (for instance, • Hydrological me • Surface and sul	within 10 years). Noteworthy stressors i odifications (examples: ditches, dams, b	tressors is apparent. Consider departure f nclude, but are not limited to the following. eaver dams, dikes, berms, ponds, etc.) amples: discharges containing obvious pollu	
Signs of vegetaHabitat/plant co	tion stress (examples: vegetation morta mmunity alteration (examples: mowing,	lity, insect damage, disease, storm damage clear-cutting, exotics, etc.)	, salt intrusion, etc.)
Is the assessment area	intensively managed? 🛛 Yes	No	
 Anadromous fis Federally prote NCDWR riparia Abuts a Primary Publicly owned N.C. Division of Abuts a stream Designated NC 	sh cted species or State endangered or thre in buffer rule in effect y Nursery Area (PNA) property f Coastal Management Area of Environm	ental Concern (AEC) (including buffer) upplemental classifications of HQW, ORW, o	
_ ()			
	eam is associated with the wetland, if	any? (check all that apply)	
Blackwater			
Tidal (if tidal, ch	neck one of the following boxes)	Inar 🗌 Wind 🔲 Both	
Is the assessment area	on a coastal island? 🗌 Yes 🖂 I	NO	
Is the assessment area	's surface water storage capacity or d	uration substantially altered by beaver?	🗌 Yes 🛛 No
Does the assessment a	rea experience overbank flooding dur	ing normal rainfall conditions? 🛛 Yes	🛛 No
1 Cround Surface Cor	dition/vagetation Condition	ment erec condition metric	
	ndition/Vegetation Condition – assess		
	ompare to reference wetland if applicable	und surface (GS) in the assessment area ar (see User Manual). If a reference is not app	
	ot severely altered		
se	dimentation, fire-plow lanes, skidder tra	essment area (ground surface alteration exa cks, bedding, fill, soil compaction, obvious ce, herbicides, salt intrusion [where appropr on)	s pollutants) (vegetation structure
2. Surface and Sub-Su	rface Storage Capacity and Duration -	 assessment area condition metric 	
Consider both increas	se and decrease in hydrology. A ditch ≤	acity and duration (Surf) and sub-surface sto 1 foot deep is considered to affect surface . Consider tidal flooding regime, if applicab	water only, while a ditch > 1 foot
□A □A W ⊠B □B W □C ⊠C W	ater storage capacity or duration are sub	nt altered. red, but not substantially (typically, not suffice stantially altered (typically, alteration sufficie ion, filling, excessive sedimentation, underg	ent to result in vegetation change)
3. Water Storage/Surfa	ce Relief – assessment area/wetland t	ype condition metric (skip for all marshe	es)
•		o for the assessment area (AA) and the wet	•
AA WT			
	ajority of wetland with depressions able to ajority of wetland with depressions able to ajority of wetland with depressions able to epressions able to pond water < 3 inches	o pond water 6 inches to 1 foot deep o pond water 3 to 6 inches deep	
3b. A Evidence th	at maximum depth of inundation is greate	er than 2 feet	

B Evidence that maximum depth of inundation is between 1 and 2 feet C Evidence that maximum depth of inundation is less than 1 foot

Soil Texture/Structure – assessment area condition metric (skip for all marshes) 4.

Check a box from each of the three soil property groups below. Dig soil profile in the dominant assessment area landscape feature. Make soil observations within the top 12 inches. Use most recent National Technical Committee for Hydric Soils guidance for regional indicators.

4a. □A	Sandy soil
⊠B	Loamy or clayey soils exhibiting redoximorphic features (concentrations, depletions, or rhizospheres)
□C	Loamy or clayey soils not exhibiting redoximorphic features
□D	Loamy or clayey gleyed soil
□E	Histosol or histic epipedon
4b. □A	Soil ribbon < 1 inch
⊠B	Soil ribbon ≥ 1 inch

4c. 🖾 A No peat or muck presence

⊡в A peat or muck presence

Discharge into Wetland - opportunity metric 5.

Check a box in each column. Consider surface pollutants or discharges (Surf) and sub-surface pollutants or discharges (Sub). Examples of sub-surface discharges include presence of nearby septic tank, underground storage tank (UST), etc. Sub

- Surf ΠA
 - Little or no evidence of pollutants or discharges entering the assessment area
- ⊠A □B □в Noticeable evidence of pollutants or discharges entering the wetland and stressing, but not overwhelming the treatment capacity of the assessment area
- ⊠C ПС Noticeable evidence of pollutants or discharges (pathogen, particulate, or soluble) entering the assessment area and potentially overwhelming the treatment capacity of the wetland (water discoloration, dead vegetation, excessive sedimentation, odor)

Land Use - opportunity metric (skip for non-riparian wetlands) 6.

Check all that apply (at least one box in each column). Evaluation involves a GIS effort with field adjustment. Consider sources draining to assessment area within entire upstream watershed (WS), within 5 miles and within the watershed draining to the assessment area (5M), and within 2 miles and within the watershed draining to the assessment area (2M).

WS 5M 2M > 10% impervious surfaces ΠA ΠA ⊟в Πв □В Confined animal operations (or other local, concentrated source of pollutants ⊠C ⊠C ⊠C ≥ 20% coverage of pasture ΠD ΠD ΠD \geq 20% coverage of agricultural land (regularly plowed land) ΠE ΠE ≥ 20% coverage of maintained grass/herb ٦F ٦F ≥ 20% coverage of clear-cut land □F ΠG □G □G Little or no opportunity to improve water quality. Lack of opportunity may result from little or no disturbance in the watershed or hydrologic alterations that prevent drainage and/or overbank flow from affecting the assessment area.

Wetland Acting as Vegetated Buffer - assessment area/wetland complex condition metric (skip for non-riparian wetlands) 7.

- Is assessment area within 50 feet of a tributary or other open water? 7a.
 - ⊠Yes □No If Yes, continue to 7b. If No, skip to Metric 8.

Wetland buffer need only be present on one side of the water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.

- How much of the first 50 feet from the bank is wetland? (Wetland buffer need only be present on one side of the .water body. Make buffer judgment based on the average width of wetland. Record a note if a portion of the buffer has been removed or disturbed.)
 - ΠA ≥ 50 feet
 - □в From 30 to < 50 feet
 - □с From 15 to < 30 feet
 - ΜD From 5 to < 15 feet
 - ΠE < 5 feet or buffer bypassed by ditches
- Tributary width. If the tributary is anastomosed, combine widths of channels/braids for a total width. 7c.
 - $\boxtimes \leq$ 15-feet wide $\square >$ 15-feet wide \square Other open water (no tributary present)
- 7d. Do roots of assessment area vegetation extend into the bank of the tributary/open water? □Yes ⊠No
- 7e. Is stream or other open water sheltered or exposed? Sheltered – adjacent open water with width < 2500 feet and no regular boat traffic. Exposed – adjacent open water with width \geq 2500 feet or regular boat traffic.
- Wetland Width at the Assessment Area wetland type/wetland complex condition metric (evaluate WT for all marshes and 8. Estuarine Woody Wetland only; evaluate WC for Bottomland Hardwood Forest, Headwater Forest, and Riverine Swamp Forest only)

Check a box in each column for riverine wetlands only. Select the average width for the wetland type at the assessment area (WT) and the wetland complex at the assessment area (WC). See User Manual for WT and WC boundaries. WT

WC ΠA ΠA ≥ 100 feet Πв Пв From 80 to < 100 feet □с □C From 50 to < 80 feet DD DD From 40 to < 50 feet ШE ΠE From 30 to < 40 feet From 15 to < 30 feet ΠF ΠF ⊠G ΠG From 5 to < 15 feet □н □н < 5 feet

9. Inundation Duration – assessment area condition metric (skip for non-riparian wetlands)

Answer for assessment area dominant landform.

- Evidence of short-duration inundation (< 7 consecutive days) ΠA
- ⊠в Evidence of saturation, without evidence of inundation
- ⊡c Evidence of long-duration inundation or very long-duration inundation (7 to 30 consecutive days or more)

10. Indicators of Deposition - assessment area condition metric (skip for non-riparian wetlands and all marshes)

- Consider recent deposition only (no plant growth since deposition).
- Sediment deposition is not excessive, but at approximately natural levels. $\boxtimes \mathsf{A}$
- □в Sediment deposition is excessive, but not overwhelming the wetland.
- ПС Sediment deposition is excessive and is overwhelming the wetland.

11. Wetland Size - wetland type/wetland complex condition metric

Check a box in each column. Involves a GIS effort with field adjustment. This metric evaluates three aspects of the wetland area: the size of the wetland type (WT), the size of the wetland complex (WC), and the size of the forested wetland (FW) (if applicable, see User Manual). See the User Manual for boundaries of these evaluation areas. If assessment area is clear-cut, select "K" for the FW column. WT

WC FW (if applicable)

ΠA

□в

□C

⊠J

Πĸ

- ΠA ≥ 500 acres ΠA □в ⊡в From 100 to < 500 acres
- □C From 50 to < 100 acres
- DD From 25 to < 50 acres DD ШE
 - ΠE From 10 to < 25 acres ΠE
- ΠF ΠF ΠF From 5 to < 10 acres
- □G □G □G From 1 to < 5 acres
- □н □н ⊟н From 0.5 to < 1 acre
 - From 0.1 to < 0.5 acre
 - ΜJ ⊠J From 0.01 to < 0.1 acre Пĸ
 - ΠK < 0.01 acre or assessment area is clear-cut

12. Wetland Intactness - wetland type condition metric (evaluate for Pocosins only)

- Pocosin is the full extent (\geq 90%) of its natural landscape size. ΠА
- ПВ Pocosin type is < 90% of the full extent of its natural landscape size.

13. Connectivity to Other Natural Areas - landscape condition metric

13a. Check appropriate box(es) (a box may be checked in each column). Involves a GIS effort with field adjustment. This metric evaluates whether the wetland is well connected (Well) and/or loosely connected (Loosely) to the landscape patch, the contiguous naturally vegetated area and open water (if appropriate). Boundaries are formed by four-lane roads, regularly maintained utility line corridors the width of a four-lane road or wider, urban landscapes, maintained fields (pasture and agriculture), or open water > 300 feet wide.

Well	Loosely	
ΠA	□ A [¯]	≥ 500 acres
□в	□В	From 100 to < 500 acres
□c	□С	From 50 to < 100 acres
D	D	From 10 to < 50 acres
ΠE	ΠE	< 10 acres
⊠F	⊠F	Wetland type has a poor or no connection to other natural habitats

13b. Evaluate for marshes only.

Wetland type has a surface hydrology connection to open waters/stream or tidal wetlands. Yes No

14. Edge Effect – wetland type condition metric (skip for all marshes and Estuarine Woody Wetland)

May involve a GIS effort with field adjustment. Estimate distance from wetland type boundary to artificial edges. Artificial edges include non-forested areas ≥ 40 feet wide such as fields, development, roads, regularly maintained utility line corridors, and clear-cuts. Consider the eight main points of the compass. Artificial edge occurs within 150 feet in how many directions? If the assessment area is clear cut, select option "C."

A	0
ПΒ	1 to

1 to 4 ⊠c 5 to 8

15. Vegetative Composition - assessment area condition metric (skip for all marshes and Pine Flat)

- Vegetation is close to reference condition in species present and their proportions. Lower strata composed of appropriate species, with exotic plants absent or sparse within the assessment area.
- □в Vegetation is different from reference condition in species diversity or proportions, but still largely composed of native species characteristic of the wetland type. This may include communities of weedy native species that develop after clearcutting or clearing. It also includes communities with exotics present, but not dominant, over a large portion of the expected strata.
- ⊠C Vegetation severely altered from reference in composition, or expected species are unnaturally absent (planted stands of noncharacteristic species or at least one stratum inappropriately composed of a single species), or exotic species are dominant in at least one stratum.

16. Vegetative Diversity – assessment area condition metric (evaluate for Non-tidal Freshwater Marsh only)

- ΠΑ Vegetation diversity is high and is composed primarily of native species (< 10% cover of exotics).
- Vegetation diversity is low or has > 10% to 50% cover of exotics. ⊠В
- Vegetation is dominated by exotic species (> 50 % cover of exotics). □с

17. Vegetative Structure - assessment area/wetland type condition metric

- 17a. Is vegetation present? ⊠Yes □No If Yes, continue to 17b. If No, skip to Metric 18.
- 17b. Evaluate percent coverage of assessment area vegetation for all marshes only. Skip to 17c for non-marsh wetlands. $\Box A \ge 25\%$ coverage of vegetation
 - B < 25% coverage of vegetation
- 17c. Check a box in each column for each stratum. Evaluate this portion of the metric for non-marsh wetlands. Consider structure in airspace above the assessment area (AA) and the wetland type (WT) separately.

011010101	e eep	
Canopy ⊠□□ Canopy	WT □A □B ⊠C	Canopy closed, or nearly closed, with natural gaps associated with natural processes Canopy present, but opened more than natural gaps Canopy sparse or absent
Mid-Story B B	□A □B ⊠C	Dense mid-story/sapling layer Moderate density mid-story/sapling layer Mid-story/sapling layer sparse or absent
Shrub B B C	□A □B ⊠C	Dense shrub layer Moderate density shrub layer Shrub layer sparse or absent
d □ B B	□A ⊠B	Dense herb layer Moderate density herb layer

18. Snags - wetland type condition metric (skip for all marshes)

□A Large snags (more than one) are visible (> 12 inches DBH, or large relative to species present and landscape stability).
 □A Not A

19. Diameter Class Distribution – wetland type condition metric (skip for all marshes)

- A Majority of canopy trees have stems > 6 inches in diameter at breast height (DBH); many large trees (> 12 inches DBH) are present.
- B Majority of canopy trees have stems between 6 and 12 inches DBH, few are > 12 inch DBH.
- \square C Majority of canopy trees are < 6 inches DBH or no trees.

20. Large Woody Debris - wetland type condition metric (skip for all marshes)

Include both natural debris and man-placed natural debris.

Large logs (more than one) are visible (> 12 inches in diameter, or large relative to species present and landscape stability).
 Not A

21. Vegetation/Open Water Dispersion - wetland type/open water condition metric (evaluate for Non-Tidal Freshwater Marsh only)

Select the figure that best describes the amount of interspersion between vegetation and open water in the growing season. Patterned areas indicate vegetated areas, while solid white areas indicate open water.

22. Hydrologic Connectivity – assessment area condition metric (evaluate for riparian wetlands and Salt/Brackish Marsh only)

Examples of activities that may severely alter hydrologic connectivity include intensive ditching, fill, sedimentation, channelization, diversion, man-made berms, beaver dams, and stream incision. Documentation required if evaluated as B, C, or D.

A Overbank <u>and</u> overland flow are not severely altered in the assessment area.

- B Overbank flow is severely altered in the assessment area.
- C Overland flow is severely altered in the assessment area.
- D Both overbank and overland flow are severely altered in the assessment area.

Notes

NC WAM Wetland Rating Sheet Accompanies User Manual Version 5.0

Wetland Site Name Wetland Q	Date of Assessment	9/11/2020)
Wetland Type Headwater Forest	Assessor Name/Organization	C. Neave	s/Wildlands
Notes on Field Assessment Form (Y/N)			NO
Presence of regulatory considerations (Y/N)			YES
Wetland is intensively managed (Y/N)			YES
Assessment area is located within 50 feet of a natural trib	utary or other open water (Y/N)		YES
Assessment area is substantially altered by beaver (Y/N)			NO
Assessment area experiences overbank flooding during n	ormal rainfall conditions (Y/N)		NO
Assessment area is on a coastal island (Y/N)		-	NO

Function	Sub-function	Metrics	Rating
Hydrology	Surface Storage and Retention Sub-surface Storage and	Condition	LOW
	Retention	Condition	LOW
Water Quality	Pathogen Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Particulate Change	Condition	LOW
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
	Soluble Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Physical Change	Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
	Pollution Change	Condition	NA
		Condition/Opportunity	NA
		Opportunity Presence (Y/N)	NA
Habitat	Physical Structure	Condition	LOW
	Landscape Patch Structure	Condition	LOW
	Vegetation Composition	Condition	LOW
unction Rating Summa	ry		
Function		Metrics	Rating
Hydrology		Condition	LOW
Water Quality		Condition	LOW
		Condition/Opportunity	LOW
		Opportunity Presence (Y/N)	NO
Habitat		Condition	LOW

Sub-function Rating Summary

U.S. ARMY CORPS OF ENGINEERS WILMINGTON DISTRICT

Action Id. SAW-2018-01788 County: Wilkes U.S.G.S. Quad: NC- Thurmond

NOTIFICATION OF JURISDICTIONAL DETERMINATION

Requestor:	Wildlands Engineering, Inc.		
	<u>Charlie Neaves</u>		
Address:	<u>312 W Millbrook Road</u>		
	<u>Raleigh, NC 27609</u>		
Telephone Number:	<u>919-851-9986</u>		
E-mail:	<u>cneaves@wildlandseng.com</u>		
Size (acres)	<u>78</u>	Nearest Town	Elkin
Nearest Waterway	Big Bugaboo Creek	River Basin	<u>Upper Pee Dee</u>
USGS HUC	<u>03040101</u>	Coordinates	Latitude: <u>36.320456</u>
			Longitude: <u>-80.985239</u>

Location description: <u>The project area is located south of the intersection of Austin-Traphill Road and King Billing Road near</u> <u>Traphill, Wilkes County, North Carolina.</u>

Indicate Which of the Following Apply:

A. Preliminary Determination

There appear to be **waters, including wetlands** on the above described project area/property, that may be subject to Section 404 of the Clean Water Act (CWA)(33 USC § 1344) and/or Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403). The **waters, including wetlands** have been delineated, and the delineation has been verified by the Corps to be sufficiently accurate and reliable. The approximate boundaries of these waters are shown on the enclosed revised delineation map submitted 2/18/2020. Therefore this preliminary jurisdiction determination may be used in the permit evaluation process, including determining compensatory mitigation. For purposes of computation of impacts, compensatory mitigation requirements, and other resource protection measures, a permit decision made on the basis of a preliminary JD will treat all waters and wetlands that would be affected in any way by the permitted activity on the site as if they are jurisdictional waters of the U.S. This preliminary determination is not an appealable action under the Regulatory Program Administrative Appeal Process (Reference 33 CFR Part 331). However, you may request an approved JD, which is an appealable action, by contacting the Corps district for further instruction.

□ There appear to be waters, including wetlands on the above described project area/property, that may be subject to Section 404 of the Clean Water Act (CWA)(33 USC § 1344) and/or Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403). However, since the waters, including wetlands have not been properly delineated, this preliminary jurisdiction determination may not be used in the permit evaluation process. Without a verified wetland delineation, this preliminary determination is merely an effective presumption of CWA/RHA jurisdiction over all of the waters, including wetlands at the project area, which is not sufficiently accurate and reliable to support an enforceable permit decision. We recommend that you have the waters, including wetlands on your project area/property delineated. As the Corps may not be able to accomplish this wetland delineation in a timely manner, you may wish to obtain a consultant to conduct a delineation that can be verified by the Corps.

B. Approved Determination

□ There are Navigable Waters of the United States within the above described project area/property subject to the permit requirements of Section 10 of the Rivers and Harbors Act (RHA) (33 USC § 403) and Section 404 of the Clean Water Act (CWA)(33 USC § 1344). Unless there is a change in law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

There are waters, including wetlands on the above described project area/property subject to the permit requirements of Section 404 of the Clean Water Act (CWA) (33 USC § 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

We recommend you have the **waters**, **including wetlands** on your project area/property delineated. As the Corps may not be able to accomplish this wetland delineation in a timely manner, you may wish to obtain a consultant to conduct a delineation that can be verified by the Corps.

 \Box The waters, including wetlands on your project area/property have been delineated and the delineation has been verified by the Corps. The approximate boundaries of these waters are shown on the enclosed delineation map dated <u>DATE</u>. We strongly

SAW-2018-01788

suggest you have this delineation surveyed. Upon completion, this survey should be reviewed and verified by the Corps. Once verified, this survey will provide an accurate depiction of all areas subject to CWA jurisdiction on your property which, provided there is no change in the law or our published regulations, may be relied upon for a period not to exceed five years.

The waters, including wetlands have been delineated and surveyed and are accurately depicted on the plat signed by the

Corps Regulatory Official identified below on **DATE**. Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.

- There are no waters of the U.S., to include wetlands, present on the above described project area/property which are subject to the permit requirements of Section 404 of the Clean Water Act (33 USC 1344). Unless there is a change in the law or our published regulations, this determination may be relied upon for a period not to exceed five years from the date of this notification.
- The property is located in one of the 20 Coastal Counties subject to regulation under the Coastal Area Management Act (CAMA). You should contact the Division of Coastal Management in Morehead City, NC, at (252) 808-2808 to determine their requirements.

Placement of dredged or fill material within waters of the US, including wetlands, without a Department of the Army permit may constitute a violation of Section 301 of the Clean Water Act (33 USC § 1311). Placement of dredged or fill material, construction or placement of structures, or work within navigable waters of the United States without a Department of the Army permit may constitute a violation of Sections 9 and/or 10 of the Rivers and Harbors Act (33 USC § 401 and/or 403). If you have any questions regarding this determination and/or the Corps regulatory program, please contact <u>Steve Kichefski</u> at <u>828-271-7980 ext. 4234</u> or <u>steven.l.kichefski@usace.army.mil</u>.

C. Basis For Determination: See the preliminary jurisdictional determination form dated 06/21/2020.

D. Remarks: None.

E. Attention USDA Program Participants

This delineation/determination has been conducted to identify the limits of Corps' Clean Water Act jurisdiction for the particular site identified in this request. The delineation/determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA Program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service, prior to starting work.

F. Appeals Information (This information applies only to approved jurisdictional determinations as indicated in B. above)

This correspondence constitutes an approved jurisdictional determination for the above described site. If you object to this determination, you may request an administrative appeal under Corps regulations at 33 CFR Part 331. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet and request for appeal (RFA) form. If you request to appeal this determination you must submit a completed RFA form to the following address:

US Army Corps of Engineers South Atlantic Division Attn: Phillip Shannin, Review Officer 60 Forsyth Street SW, Room 10M15 Atlanta, Georgia 30303-8801

In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 CFR part 331.5, and that it has been received by the Division Office within 60 days of the date of the NAP. Should you decide to submit an RFA form, it must be received at the above address by **Not applicable**.

It is not necessary to submit an RFA form to the Division Office if you do not object to the determination in this correspondence.

Corps Regulatory Official:

Date of JD: <u>06/21/2020</u> Expiration Date of JD: <u>Not applicable</u>

<u>SAW-2018-01788</u> The Wilmington District is committed to providing the highest level of support to the public. To help us ensure we continue to do so, please complete the Customer Satisfaction Survey located at http://corpsmapu.usace.army.mil/cm_apex/f?p=136:4:0

Copy furnished:

Property Owner: Address:	Horace Randall Wood PO Box 9 Thurmond, NC 28683
Telephone Number:	<u>336-413-1794</u>
Property Owner:	Gaye L Swaim
Address:	2330 King Billings Road
	Traphill, NC 28685
Telephone Number:	336-957-2641
Property Owner:	David Cothren
Address:	2195 King Billings Road
	Traphill, NC 28685
Telephone Number:	336-957-2579
Property Owner:	Larry Gambill
Address:	5233 Traphill Road
	Traphill, NC 28685
Telephone Number:	336-957-4040

NOTIFICATION OF ADMINISTRATIVE APPEAL OPTIONS AND PROCESS AND REQUEST FOR APPEAL

App	icant: Wildlands Engineering, Inc., Charlie Neaves	File Number: <u>SAW-2018-01788</u>		Date: 06/21/2020
Atta	ched is:		See Sect	ion below
	INITIAL PROFFERED PERMIT (Standard Permit of	or Letter of permission)		А
	PROFFERED PERMIT (Standard Permit or Letter of permission)			В
	PERMIT DENIAL			С
	APPROVED JURISDICTIONAL DETERMINATION	DN		D
\boxtimes	PRELIMINARY JURISDICTIONAL DETERMINA	ATION		Е

SECTION I - The following identifies your rights and options regarding an administrative appeal of the above decision. Additional information may be found at or <u>http://www.usace.army.mil/Missions/CivilWorks/RegulatoryProgramandPermits.aspx</u> or the Corps regulations at 33 CFR Part 331.

A: INITIAL PROFFERED PERMIT: You may accept or object to the permit.

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- OBJECT: If you object to the permit (Standard or LOP) because of certain terms and conditions therein, you may request that the permit be modified accordingly. You must complete Section II of this form and return the form to the district engineer. Your objections must be received by the district engineer within 60 days of the date of this notice, or you will forfeit your right to appeal the permit in the future. Upon receipt of your letter, the district engineer will evaluate your objections and may: (a) modify the permit to address all of your concerns, (b) modify the permit to address some of your objections, or (c) not modify the permit having determined that the permit should be issued as previously written. After evaluating your objections, the district engineer will send you a proffered permit for your reconsideration, as indicated in Section B below.

B: PROFFERED PERMIT: You may accept or appeal the permit

- ACCEPT: If you received a Standard Permit, you may sign the permit document and return it to the district engineer for final authorization. If you received a Letter of Permission (LOP), you may accept the LOP and your work is authorized. Your signature on the Standard Permit or acceptance of the LOP means that you accept the permit in its entirety, and waive all rights to appeal the permit, including its terms and conditions, and approved jurisdictional determinations associated with the permit.
- APPEAL: If you choose to decline the proffered permit (Standard or LOP) because of certain terms and conditions therein, you may appeal the declined permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.

C: PERMIT DENIAL: You may appeal the denial of a permit under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the division engineer. This form must be received by the division engineer within 60 days of the date of this notice.

D: APPROVED JURISDICTIONAL DETERMINATION: You may accept or appeal the approved JD or provide new information.

- ACCEPT: You do not need to notify the Corps to accept an approved JD. Failure to notify the Corps within 60 days of the date of this notice, means that you accept the approved JD in its entirety, and waive all rights to appeal the approved JD.
- APPEAL: If you disagree with the approved JD, you may appeal the approved JD under the Corps of Engineers Administrative Appeal Process by completing Section II of this form and sending the form to the district engineer. This form must be received by the division engineer within 60 days of the date of this notice.

E: PRELIMINARY JURISDICTIONAL DETERMINATION: You do not need to respond to the Corps regarding the preliminary JD. The Preliminary JD is not appealable. If you wish, you may request an approved JD (which may be appealed), by contacting the Corps district for further instruction. Also you may provide new information for further consideration by the Corps to reevaluate the JD.

SECTION II - REQUEST FOR APPEAL or OBJECTIONS TO AN INITIAL PROFFERED PERMIT

REASONS FOR APPEAL OR OBJECTIONS: (Describe your reasons for appealing the decision or your objections to an initial proffered permit in clear concise statements. You may attach additional information to this form to clarify where your reasons or objections are addressed in the administrative record.)

ADDITIONAL INFORMATION: The appeal is limited to a review of the administrative record, the Corps memorandum for the record of the appeal conference or meeting, and any supplemental information that the review officer has determined is needed to clarify the administrative record. Neither the appellant nor the Corps may add new information or analyses to the record. However, you may provide additional information to clarify the location of information that is already in the administrative record.

POINT OF CONTACT FOR QUESTIONS OR INFORMATION:					
If you have questions regarding this decision and/or the	If you only have questions regarding the appeal process you may				
appeal process you may contact:	also contact:				
District Engineer, Wilmington Regulatory Division	Mr. Phillip Shannin, Administrative Appeal Review Officer				
Attn: Steve Kichefski	CESAD-PDO				
Asheville Regulatory Office	U.S. Army Corps of Engineers, South Atlantic Division				
U.S Army Corps of Engineers	60 Forsyth Street, Room 10M15				
151 Patton Avenue, Room 208	Atlanta, Georgia 30303-8801				
Asheville, North Carolina 28801	Phone: (404) 562-5137				

RIGHT OF ENTRY: Your signature below grants the right of entry to Corps of Engineers personnel, and any government consultants, to conduct investigations of the project site during the course of the appeal process. You will be provided a 15 day notice of any site investigation, and will have the opportunity to participate in all site investigations.

	Date:	Telephone number:
Signature of appellant or agent.		

For appeals on Initial Proffered Permits send this form to:

District Engineer, Wilmington Regulatory Division, Attn: Steve Kichefski, 69 Darlington Avenue, Wilmington, North Carolina 28403

For Permit denials, Proffered Permits and Approved Jurisdictional Determinations send this form to:

Division Engineer, Commander, U.S. Army Engineer Division, South Atlantic, Attn: Mr. Phillip Shannin, Administrative Appeal Officer, CESAD-PDO, 60 Forsyth Street, Room 10M15, Atlanta, Georgia 30303-8801 Phone: (404) 562-5137

PRELIMINARY JURISDICTIONAL DETERMINATION (PJD) FORM

BACKGROUND INFORMATION

- A. REPORT COMPLETION DATE FOR PJD: 06/21/2020
- **B. NAME AND ADDRESS OF PERSON REQUESTING PJD:** Wildlands Engineering, Inc., Charlie Neaves, 312 W Millbrook Road, Raleigh, NC 27609
- C. DISTRICT OFFICE, FILE NAME, AND NUMBER: Wilmington District, NCDMS-Bug Headwaters Mitigation Site, SAW-2018-01788
- **D. PROJECT LOCATION(S) AND BACKGROUND INFORMATION:** The project area is located south of the intersection of Austin-Traphill Road and King Billing Road near Traphill, Wilkes County, North Carolina.

(USE THE TABLE BELOW TO DOCUMENT MULTIPLE AQUATIC RESOURCES AND/OR AQUATIC RESOURCES AT DIFFERENT SITES)

State: NCCounty: WilkesCity: ElkinCenter coordinates of site (lat/long in degree decimal format): Latitude: 36.320456 Longitude: -80.985239

Universal Transverse Mercator:

Name of nearest waterbody: Big Bugaboo Creek

E. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

Office (Desk) Determination. Date:

Field Determination. Date(s): February 11, 2020

TABLE OF AQUATIC RESOURCES IN REVIEW AREA WHICH "MAY BE" SUBJECT TOREGULATORY JURISDICTION

Site Number	Latitude (decimal degrees)	Longitude (decimal degrees)	Estimated amount of aquatic resources in review area (acreage and linear feet, if applicable	Type of aquatic resources (i.e., wetland vs. non-wetland waters)	Geographic authority to which the aquatic resource "may be" subject (i.e., Section 404 or Section 10/404)
1	2	3	4	5	6
See attached table					

- 1. The Corps of Engineers believes that there may be jurisdictional aquatic resources in the review area, and the requestor of this PJD is hereby advised of his or her option to request and obtain an approved JD (AJD) for that review area based on an informed decision after having discussed the various types of JDs and their characteristics and circumstances when they may be appropriate.
- 2. In any circumstance where a permit applicant obtains an individual permit, or a Nationwide General Permit (NWP) or other general permit verification requiring "pre- construction notification" (PCN), or requests verification for a non-reporting NWP or other general permit, and the permit applicant has not requested an AJD for the activity, the permit applicant is hereby made aware that: (1) the permit applicant has elected to seek a permit authorization based on a PJD, which does not make an official determination of jurisdictional aquatic resources; (2) the applicant has the option to request an AJD before accepting the terms and conditions of the permit authorization, and that basing a permit authorization on an AJD could possibly result in less compensatory mitigation being required or different special conditions; (3) the applicant has the right to request an individual permit rather than accepting the terms and conditions of the NWP or other general permit authorization; (4) the applicant can accept a permit authorization and thereby agree to comply with all the terms and conditions of that permit, including whatever mitigation requirements the Corps has determined to be necessary; (5) undertaking any activity in reliance upon the subject permit authorization without requesting an AJD constitutes the applicant's acceptance of the use of the PJD; (6) accepting a permit authorization (e.g., signing a proffered individual permit) or undertaking any activity in reliance on any form of Corps permit authorization based on a PJD constitutes agreement that all aquatic resources in the review area affected in any way by that activity will be treated as jurisdictional, and waives any challenge to such jurisdiction in any administrative or judicial compliance or enforcement action, or in any administrative appeal or in any Federal court; and (7) whether the applicant elects to use either an AJD or a PJD, the JD will be processed as soon as practicable. Further, an AJD, a proffered individual permit (and all terms and conditions contained therein), or individual permit denial can be administratively appealed pursuant to 33 C.F.R. Part 331. If, during an administrative appeal, it becomes appropriate to make an official determination whether geographic jurisdiction exists over aquatic resources in the review area, or to provide an official delineation of jurisdictional aquatic resources in the review area, the Corps will provide an AJD to accomplish that result, as soon as is practicable. This PJD finds that there "may be" waters of the U.S. and/or that there "may be" navigable waters of the U.S. on the subject review area, and identifies all aquatic features in the review area that could be affected by the proposed activity, based on the following information:

SUPPORTING DATA. Data reviewed for PJD (check all that apply)

Checked items should be included in subject file. Ap below where indicated for all checked items:	opropriately reference sources

Maps, plans, plots or plat submitted by or on behalf of the PJD requestor:
Мар:
Data sheets prepared/submitted by or on behalf of the PJD requestor. Office concurs with data sheets/delineation report. Office does not concur with data sheets/delineation report. Rationale:
Data sheets prepared by the Corps:
Corps navigable waters' study:
U.S. Geological Survey Hydrologic Atlas:
USGS NHD data. USGS 8 and 12 digit HUC maps.
U.S. Geological Survey map(s). Cite scale & quad name: Thurmond, NC Quad 1:12000
Natural Resources Conservation Service Soil Survey. Citation: Web Soil Survey
National wetlands inventory map(s). Cite name:
State/local wetland inventory map(s):
FEMA/FIRM maps:
100-year Floodplain Elevation is:(National Geodetic Vertical Datum of 1929)
Photographs: Aerial (Name & Date): Provided by NC Onemap 2018
or Other (Name & Date): Site Photos 11/2018
Previous determination(s). File no. and date of response letter:
Other information (please specify):

IMPORTANT NOTE: The information recorded on this form has not necessarily been verified by the Corps and should not be relied upon for later jurisdictional determinations.

Signature and date of Regulatory staff member completing PJD

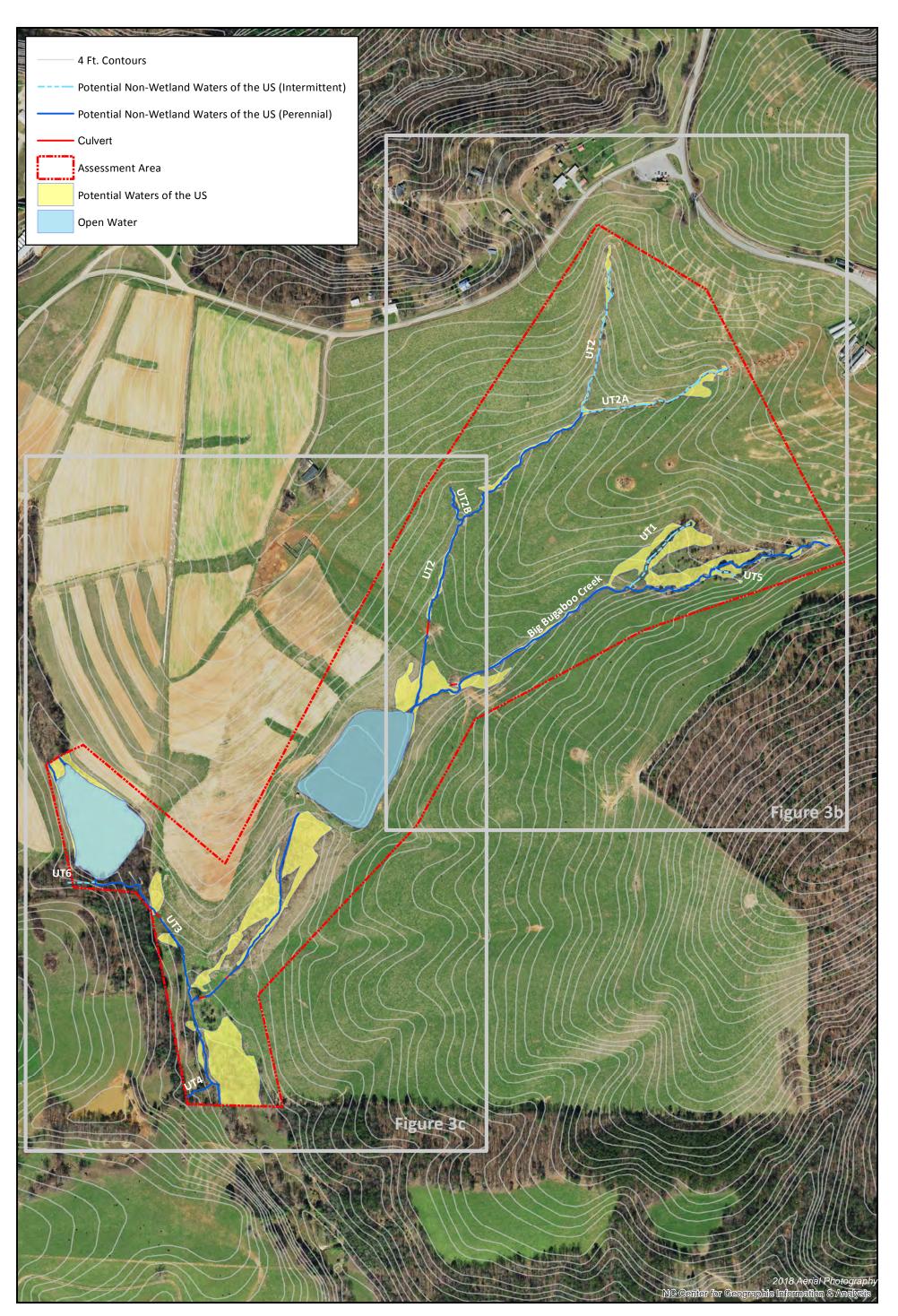
12/20/2019 Charlie Nerwes

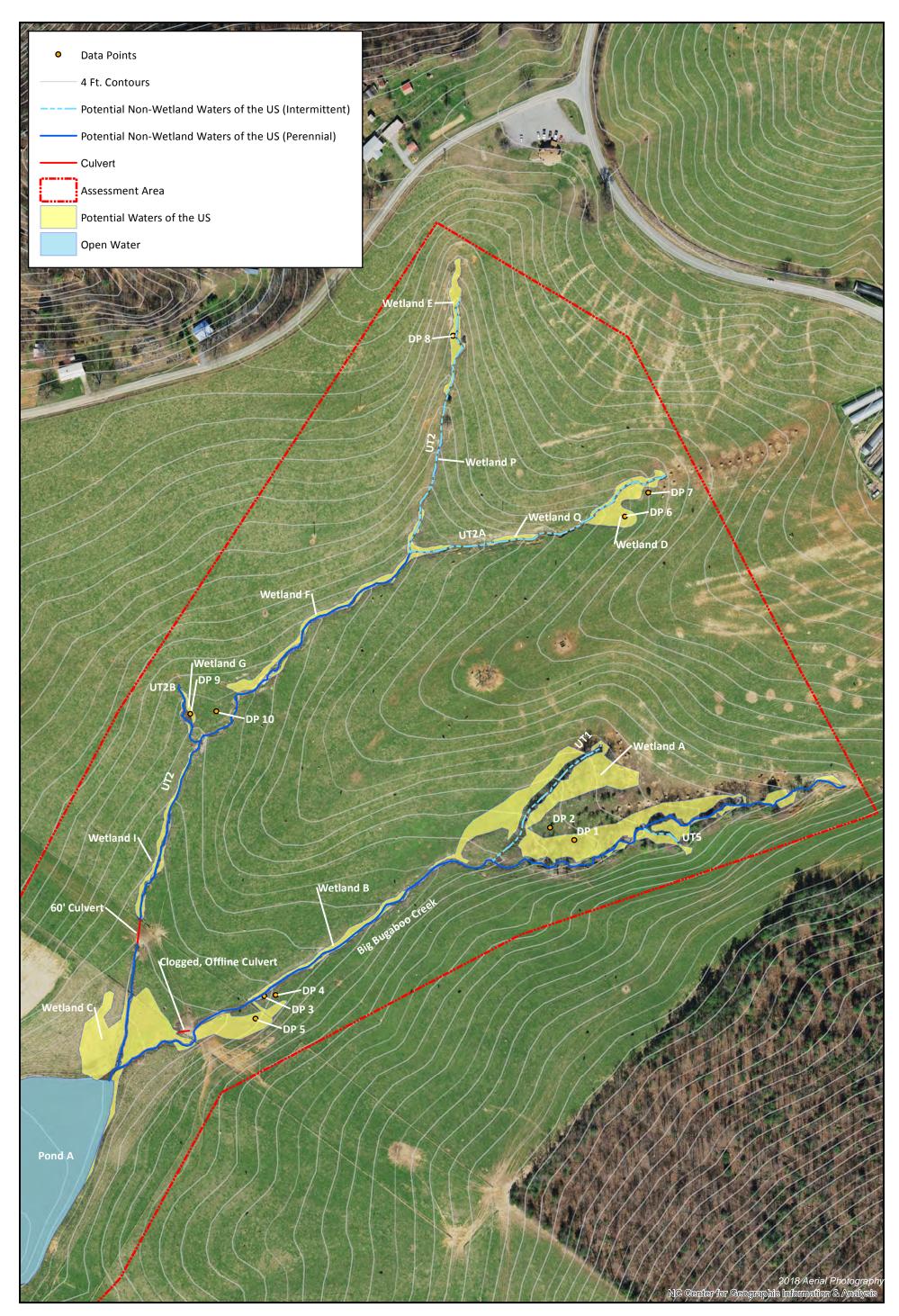
Signature and date of person requesting PJD (REQUIRED, unless obtaining the signature is impracticable)¹

¹ Districts may establish timeframes for requestor to return signed PJD forms. If the requestor does not respond within the established time frame, the district may presume concurrence and no additional follow up is necessary prior to finalizing an action.

Feature	Latitude	Longitude	Cowardin Class	Estimated Amount of Aquatic Resource in Review Area	Class of Aquatic Resource
Big Bugaboo Creek	36.320879	-80.983763	Riverine - Streambed	3474.39	Potential Waters of the U (Perennial)
UT1	36.321979	-80.981961	Unconsolidated Bottom	380.18	Potential Waters of the U (Intermittent)
UT2	36.323216	-80.983486	Riverine - Streambed	2091.79	Potential Waters of the U (Intermittent/Perennial)
UT2A	36.323639	-80.982007	Unconsolidated Bottom	660.61	Potential Waters of the U (Intermittent)
UT2B	36.322420	-80.984822	Riverine - Streambed	167.65	Potential Waters of the U (Perennial)
UT3	36.317657	-80.988677	Riverine - Streambed	843.15	Potential Waters of the U (Perennial)
UT4	36.315832	-80.988171	Riverine - Streambed	127.59	Potential Waters of the U (Perennial)
UT5	36.321741	-80.981049	Unconsolidated Bottom	96.14	Potential Waters of the U (Intermittent)
UT6	36.318128	-80.989893	Unconsolidated Bottom	111.74	Potential Waters of the U (Intermittent)
Wetland A	36.321689	-80.981733	Palustrine - Forested	1.399	Potential Waters of the U
Wetland B	36.320659	-80.984142	Palustrine - Emergent	0.125	Potential Waters of the U
Wetland C	36.320513	-80.984210	Palustrine - Emergent	0.867	Potential Waters of the U
Wetland D	36.323751	-80.981386	Palustrine - Emergent	0.207	Potential Waters of the U
Wetland E	36.324879	-80.982764	Palustrine - Emergent	0.116	Potential Waters of the U
Wetland F	36.323096	-80.983762	Palustrine - Emergent	0.230	Potential Waters of the
Wetland G	36.322441	-80.984769	Palustrine - Emergent	0.026	Potential Waters of the
Wetland H	36.318160	-80.987255	Palustrine - Forested	1.608	Potential Waters of the
Wetland I	36.321617	-80.984997	Palustrine - Emergent	0.103	Potential Waters of the
Wetland J	36.317495	-80.988696	Palustrine - Emergent	0.062	Potential Waters of the
Wetland K	36.318038	-80.988815	Palustrine - Emergent	0.176	Potential Waters of the
Wetland L	36.318237	-80.989181	Palustrine - Forested	0.007	Potential Waters of the
Wetland M	36.318138	-80.989017	Palustrine - Forested	0.005	Potential Waters of the
Wetland N	36.319407	-80.990209	Palustrine - Scrub-Shrub	0.307	Potential Waters of the
Wetland O	36.316202	-80.987673	Palustrine - Forested	1.339	Potential Waters of the
Wetland P	36.324130	-80.982860	Palustrine - Emergent	0.004	Potential Waters of the
Wetland Q	36.323605	-80.982274	Palustrine - Emergent	0.028	Potential Waters of the
Pond A	36.319476	-80.986023	Lacustrine - Limnetic	2.973	Potential Waters of the
Pond B	36.318773	-80.989660	Lacustrine - Limnetic	2.158	Potential Waters of the

Table 1. Summary of On-Site Jurisdictional Waters

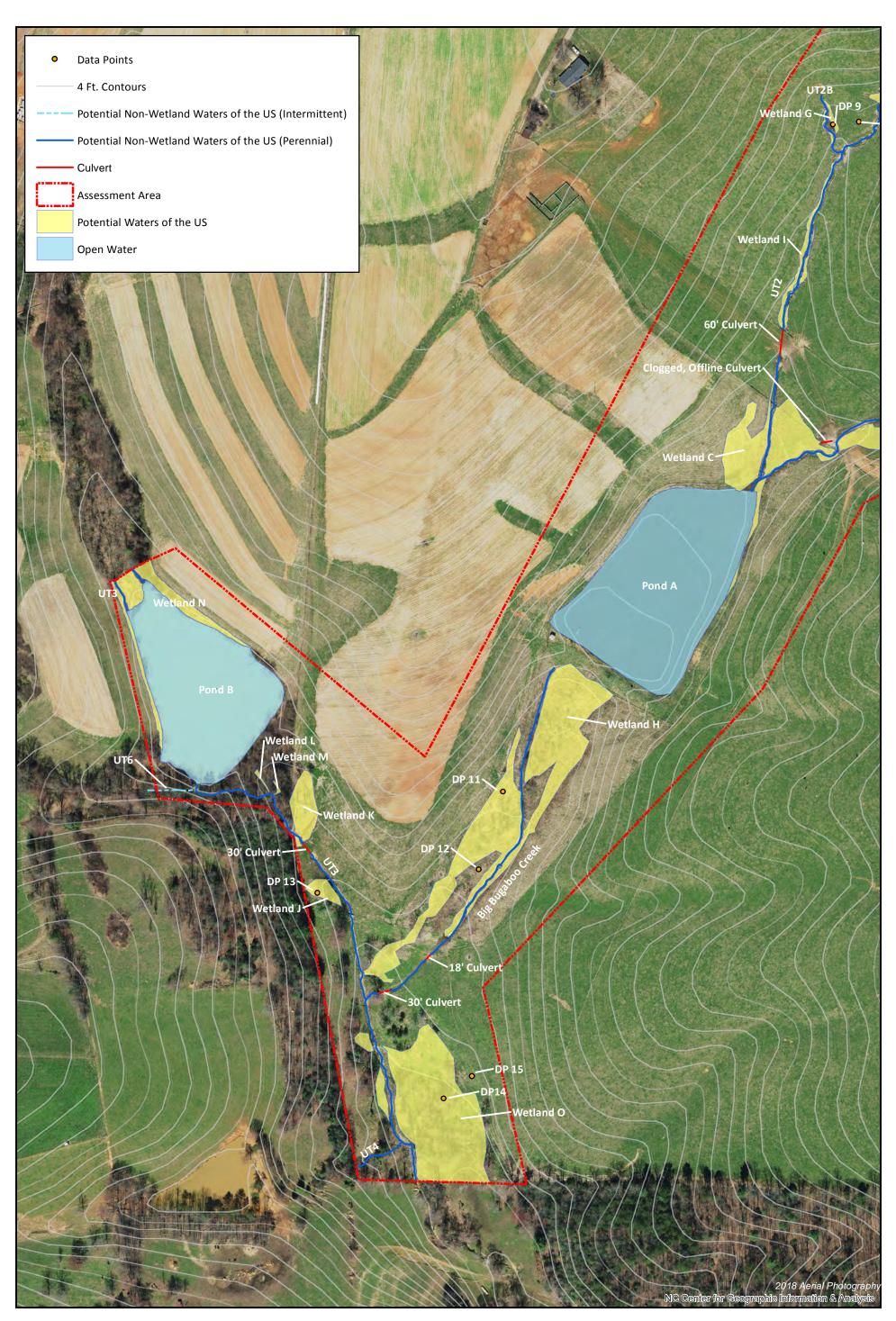



Figure 3a Site Map Overview Bug Headwaters Mitigation Site Yadkin 03040101

4 M

Wilkes County, NC

0	175	350	Feet	



0	100	200	Feet

Figure 3b Site Map Bug Headwaters Mitigation Site Yadkin 03040101

A M

Wilkes County, NC

0	100	200	Feet

Figure 3c Site Map Bug Headwaters Mitigation Site Yadkin 03040101

A M

Wilkes County, NC

Appendix 4

Categorical Exclusion Form for Ecosystem Enhancement Program Projects Version 1.4

Note: Only Appendix A should to be submitted (along with any supporting documentation) as the environmental document.

Part 1: General Project Information		
Project Name:	Bug Headwaters Mitigation Site	
County Name:	Wilkes County	
EEP Number:	100085	
Project Sponsor:	Wildlands Engineering, Inc.	
Project Contact Name:	Carolyn Lanza	
Project Contact Address:	312 W. Millbrook, Suite 225 Raleigh, NC 27609	
Project Contact E-mail:	clanza@wildlandseng.com	
EEP Project Manager:	Matthew Reid	
Project Description		

The Bug Headwaters mitigation site is a stream mitigation project located approximately 9 miles northwest of Elkin and 5.5 miles South of Roaring Gap in Wilkes County. The site is located on three parcels by two different families and is used for agriculture (primarily livestock production). The project includes Big Bugaboo Creek and 5 unnamed tributaries for a total of 8,375 linear feet of stream. The project will provide stream mitigation units to the Division of Mitigation Services in the Yadkin River Basin (03040101).

For Official Use Only

Reviewed By:

11/5/2018

Date

Conditional Approved By:

Date

Check this box if there are outstanding issues

Final Approval By:

11-7-18 Date

Matthew Reid

EEP Project Manager

For Division Administrator FHWA

For Division Administrator FHWA

Part 2: All Projects		
Regulation/Question	Response	
Coastal Zone Management Act (CZMA)		
1. Is the project located in a CAMA county?	│	
2. Does the project involve ground-disturbing activities within a CAMA Area of Environmental Concern (AEC)?	☐ Yes ☐ No ☑ N/A	
3. Has a CAMA permit been secured?	☐ Yes ☐ No ☑ N/A	
4. Has NCDCM agreed that the project is consistent with the NC Coastal Management Program?	☐ Yes ☐ No ☑ N/A	
Comprehensive Environmental Response, Compensation and Liability Act (C	ERCLA)	
1. Is this a "full-delivery" project?	I ∕ Yes	
2. Has the zoning/land use of the subject property and adjacent properties ever been designated as commercial or industrial?	☐ Yes ☑ No ☐ N/A	
3. As a result of a limited Phase I Site Assessment, are there known or potential hazardous waste sites within or adjacent to the project area?	☐ Yes ☑ No ☐ N/A	
4. As a result of a Phase I Site Assessment, are there known or potential hazardous waste sites within or adjacent to the project area?	☐ Yes ☐ No ☑ N/A	
5. As a result of a Phase II Site Assessment, are there known or potential hazardous waste sites within the project area?	☐ Yes ☐ No ☑ N/A	
6. Is there an approved hazardous mitigation plan?	│ Yes │ No ☑ N/A	
National Historic Preservation Act (Section 106)		
1. Are there properties listed on, or eligible for listing on, the National Register of Historic Places in the project area?	☐ Yes ☑ No	
2. Does the project affect such properties and does the SHPO/THPO concur?	☐ Yes ☐ No ☑ N/A	
3. If the effects are adverse, have they been resolved?	☐ Yes ☐ No ☑ N/A	
Uniform Relocation Assistance and Real Property Acquisition Policies Act (Un	iform Act)	
1. Is this a "full-delivery" project?	I ✓ Yes	
2. Does the project require the acquisition of real estate?	✓ Yes □ No □ N/A	
3. Was the property acquisition completed prior to the intent to use federal funds?	☐ Yes ☑ No ☐ N/A	
 4. Has the owner of the property been informed: * prior to making an offer that the agency does not have condemnation authority; and * what the fair market value is believed to be? 	☑ Yes □ No □ N/A	

Part 3: Ground-Disturbing Activities		
Regulation/Question American Indian Religious Freedom Act (AIRFA)	Response	
1. Is the project located in a county claimed as "territory" by the Eastern Band of	I Yes	
Cherokee Indians? 2. Is the site of religious importance to American Indians?	□ No □ Yes	
	I No I N/A	
3. Is the project listed on, or eligible for listing on, the National Register of Historic		
Places?	I No I N/A	
4. Have the effects of the project on this site been considered?	│	
	☑ N/A	
Antiquities Act (AA)	· <u> </u>	
1. Is the project located on Federal lands?	☐ Yes ☑ No	
2. Will there be loss or destruction of historic or prehistoric ruins, monuments or objects		
of antiquity?	I □ No I I N/A	
3. Will a permit from the appropriate Federal agency be required?		
	I No I N/A	
4. Has a permit been obtained?	Yes	
	I □ No I I N/A	
Archaeological Resources Protection Act (ARPA)	. —	
1. Is the project located on federal or Indian lands (reservation)?	I Yes I INo	
2. Will there be a loss or destruction of archaeological resources?		
	I No I N/A	
3. Will a permit from the appropriate Federal agency be required?	│	
	I NO I N/A	
4. Has a permit been obtained?	│	
	⊠ N/A	
Endangered Species Act (ESA)		
1. Are federal Threatened and Endangered species and/or Designated Critical Habitat listed for the county?	I ✓ Yes	
2. Is Designated Critical Habitat or suitable habitat present for listed species?	I ✓ Yes	
3. Are T&E species present or is the project being conducted in Designated Critical		
Habitat?		
4. Is the project "likely to adversely affect" the species and/or "likely to adversely modify" Designated Critical Habitat?		
	□ No ☑ N/A	
5. Does the USFWS/NOAA-Fisheries concur in the effects determination?	│	
	☑ N/A	
6. Has the USFWS/NOAA-Fisheries rendered a "jeopardy" determination?	☐ Yes ☐ No	

Executive Order 13007 (Indian Sacred Sites)			
1. Is the project located on Federal lands that are within a county claimed as "territory"	🔲 Yes		
by the EBCI?	☑ No		
2. Has the EBCI indicated that Indian sacred sites may be impacted by the proposed			
project?			
	☑ N/A		
3. Have accommodations been made for access to and ceremonial use of Indian sacred	Yes		
sites?			
Formland Protoction Dollars Act (FDDA)	☑ N/A		
Farmland Protection Policy Act (FPPA)			
1. Will real estate be acquired?	✓ Yes □ No		
2. Has NRCS determined that the project contains prime, unique, statewide or locally	🗹 Yes		
important farmland?	🔲 No		
	<u>□</u> N/A		
3. Has the completed Form AD-1006 been submitted to NRCS?	I ∕ Yes		
Fish and Wildlife Coordination Act (FWCA)			
1. Will the project impound, divert, channel deepen, or otherwise control/modify any water body?	☑ Yes □ No		
2. Have the USFWS and the NCWRC been consulted?	✓ Yes		
	🔲 No		
	□ N/A		
Land and Water Conservation Fund Act (Section 6(f))			
1. Will the project require the conversion of such property to a use other than public, outdoor recreation?	☐ Yes ☑ No		
2. Has the NPS approved of the conversion?			
	I N/A		
Magnuson-Stevens Fishery Conservation and Management Act (Essential Fishery Conservation and Fishery Conservatio			
1. Is the project located in an estuarine system?	☐ Yes		
	🔽 No		
2. Is suitable habitat present for EFH-protected species?			
	□ No ☑ N/A		
2. La sufficient design information sucilable to make a determination of the effect of the			
3. Is sufficient design information available to make a determination of the effect of the project on EFH?			
	I NO I N/A		
4. Will the project adversely affect EFH?			
	I√I N/A		
5. Has consultation with NOAA-Fisheries occurred?	Yes		
	□ No		
	🔽 N/A		
Migratory Bird Treaty Act (MBTA)			
1. Does the USFWS have any recommendations with the project relative to the MBTA?	🗌 Yes		
	🔽 No		
2. Have the USFWS recommendations been incorporated?	🗌 Yes		
	No No		
Wilderness Act			
1. Is the project in a Wilderness area?	Yes		
	✓ No		
2. Has a special use permit and/or easement been obtained from the maintaining			
federal agency?			
	✓ N/A		

Bug Headwaters Mitigation Site Categorical Exclusion SUMMARY

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) provides a Federal "Superfund" to clean up uncontrolled or abandoned hazardous-waste sites as well as accidents, spills, and other emergency releases of pollutants and contaminants into the environment.

As the Bug Headwaters Mitigation Site is a full-delivery project; an EDR Radius Map Report with Geocheck was ordered for the site through Environmental Data Resources, Inc on July 10, 2018. Neither the target property nor the adjacent properties were listed in any of the Federal, State, or Tribal environmental databases searched by the EDR. The assessment revealed no evidence of any "recognized environmental conditions" in connection with the target property. The Executive Summary of the EDR report is included in the Appendix. The full report is available if needed.

National Historic Preservation Act (Section 106)

The National Historic Preservation Act declares a national policy of historic preservation to protect, rehabilitate, restore, and reuse districts, sites, buildings, structures, and objects significant in American architecture, history, archaeology, and culture, and Section 106 mandates that federal agencies take into account the effect of an undertaking on a property that is included in, or is eligible for inclusion in, the National Register of Historic Places.

Wildlands Engineering, Inc. (Wildlands) requested review and comment from the State Historic Preservation Office (SHPO) with respect to any archeological and architectural resources related to the Bug Headwaters Mitigation Site on July 11, 2018. SHPO responded on August 16, 2018 and stated they were aware of "no historic resources which would be affected by the project" and would have no further comment. All correspondence related to Section 106 is included in the Appendix.

American Indian Religious Freedom Act (AIRFA)

The American Indian Religious Freedom Act provides for the protection and preservation of places of religious importance to American Indians, Eskimos, and Native Hawaiians.

Wildlands requested review and comment from the Eastern Band of Cherokee Indians (EBCI) Tribal Historic Preservation Office (THPO) with respect to any archeological or religious resources related to the Bug Headwaters Mitigation Site on August 15, 2018. The Cherokee Nation and United Keetoowah Band of Cherokee Indians in Oklahoma THPO were contacted on October 5, 2018. The Cherokee nation responded on November 2, 2018 saying Bug Headwaters is "outside the Cherokee Nation's Area of Interest". At this time, Wildlands has not received a response from EBCI and United Keetoowah Band of Cherokee Indians in Oklahoma. All correspondence related to AIRFA is included in the Appendix.

Uniform Relocation Assistance and Real Property Acquisition Policies Act (Uniform Act)

These acts, collectively known as the Uniform Act, provide for uniform and equitable treatment of persons displaced from their homes, businesses, non-profit associations, or farms by federal and federally-assisted programs, and establish uniform and equitable land acquisition policies.

Bug Headwaters Mitigation Site is a full-delivery project that includes land acquisition. Notification of the fair market value of the project property and the lack of condemnation authority by Wildlands was included in the signed Option Agreements for the project properties. A copy of the relevant sections of the Option Agreements are included in the Appendix.

Endangered Species Act (ESA)

Section 7 of the ESA requires federal agencies, in consultation with and with the assistance of the Secretary of the Interior or of Commerce, as appropriate, to ensure that actions they authorize, fund or

carry out are not likely to jeopardize the continued existence of threatened or endangered species or result in the destruction or adverse modification of critical habitat for these species.

The Wilkes County listed endangered species includes the bog turtle (*Glyptemys muhlenbergii*), Northern long-eared bat (*Myotis septentrionalis*), and the rusty-patched bumble bee (*bombus affinis*). The the United States Fish and Wildlife Service (USFWS) does not currently list any Critical Habitat Designations for the Federally-listed species within Wilkes County nor are there any known occurrences of the NLEB documented within the County

(https://www.fws.gov/asheville/htmls/project_review/NLEB_in_WNC.html). The project site is over 40 miles from the nearest known hibernaculum for the NLEB. A pedestrian survey conducted on August 9, 2018, indicated that the Site provides potential habitat for the bog turtle, rusty-patched bumble bee and potential summer roosting for the NLEB but no individuals were located at the time.

Forested habitats containing trees at least 3-inch dbh in the project area provide suitable habitat for NLEB. Due to the decline of the NLEB population from the White Nose Syndrome, USFWS has issued the finalization of a special rule under section 4(d) of the ESA to addresses the effects to the NLEB resulting from purposeful and incidental take based on the occurrence of WNS. Because the project is located within a WNS zone and will include the removal/clearing of trees, it is subject to the final 4(d) ruling. A review of North Carolina Natural Heritage Program (NCNHP records did not indicate any known NLEB populations within 2.0 mile of the study area; therefore, the project is eligible to use the NLEB 4(d) Rule Streamlined Consultation Form to meet regulatory requirements for section 7(a)(2) compliance 4(d) consultation.

To meet regulatory requirements, a letter requesting comment from the USFWS was sent on July 11, 2018. No response from the USFWS was received within the 30-day response period. Therefore, the signing of the NLEB 4(d) Rule Streamlined Consultation Form by the FHWA determines that this project may affect the NLEB, but that any resulting incidental take of the NLEB is not prohibited by the final 4(d) rule. Due to the absence of the species, the project has been determined by Wildlands to "to may affect but not likely to adversely affect" the bog turtle; however, it is listed as threatened due to similarity of appearance and as such is not subject to Section 7 consultation. The rusty-patched bumble bee in Wilkes County is listed as endangered from "historic" records. The species was last seen in the county more than 50 years ago. The project is 160 miles from the nearest High Potential Zone (HPZ). The HPZ is determined by USFWS to be the area where the presence of the species should be presumed for ESA Section 7 purposes. Therefore, Wildlands has determined the project will have "no effect: on the rusty-patched bumble bee. A FHWA signed 4(d) consultation form and the correspondence associated with this determination are included in the Appendix.

Farmland Protection Policy Act (FPPA)

The FPPA requires that, before taking or approving any federal action that would result in conversion of farmland, the agency must examine the effects of the action using the criteria set forth in the FPPA, and, if there are adverse effects, must consider alternatives to lessen them.

The Bug Headwaters Mitigation Site includes the conversion of prime farmland. As such, Form AD-1006 has been completed and submitted to the Natural Resources Conservation Service (NRCS). The completed form and correspondence documenting its submittal is included in the Appendix.

Fish and Wildlife Coordination Act (FWCA)

The FWCA requires consultation with the USFWS and the appropriate state wildlife agency on projects that alter or modify a water body. Reports and recommendations prepared by these agencies document

project effects on wildlife and identify measures that may be adopted to prevent loss or damage to wildlife resources.

The Bug Headwaters Mitigation Site includes stream restoration. Wildlands requested comment on the project from both the USFWS and the North Carolina Wildlife Resources Commission (NCWRC) on July 11, 2018. NCWRC responded on August 7, 2018 and had no objections to the project. At this time, Wildlands has not received a response from USFWS. All correspondence with the two agencies is included in the Appendix.

Migratory Bird Treaty Act (MBTA)

The MBTA makes it unlawful for anyone to kill, capture, collect, possess, buy, sell, trade, ship, import, or export any migratory bird. The indirect killing of birds by destroying their nests and eggs is covered by the MBTA, so construction in nesting areas during nesting seasons can constitute a taking.

Wildlands requested comment on the Bug Headwaters Mitigation Site from the USFWS regarding migratory birds on July 11, 2018. At this time, Wildlands has not received a response from the USFWS. All correspondence with USFWS is included in the Appendix.

Bug Headwaters Mitigation Site Categorical Exclusion

APPENDIX

Regulatory Correspondence

July 11, 2018

Renee Gledhill-Earley State Historic Preservation Office 4617 Mail Service Center Raleigh, NC 27699-4617

Subject: Bug Headwaters Mitigation Site Wilkes County, North Carolina

Dear Ms. Gledhill-Earley,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the Bug Headwaters Mitigation Site. A Site Map and USGS Topographic Map with approximate project areas are enclosed. The topographic figure was prepared from the Traphill, 7.5-Minute USGS Topographic Quadrangles.

The Bug Headwaters Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel impacts. Several sections of channel have been identified as significantly degraded. The project will include stream restoration on Big Bugaboo Creek and four unnamed tributaries to Big Bugaboo Creek, which eventually drains to the Yadkin River. Wood Pond and Swaim Pond will also be removed as part of the restoration process. The site has historically been disturbed due to livestock use. There are no existing structures within the project area. Furthermore, no archeological artifacts have been observed or noted during preliminary surveys of the site for restoration purposes.

We ask that you review this site based on the attached information to determine the presence of any historic properties.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning the project.

Sincerely,

Carolyn Lanza

Carolyn Lanza Environmental Scientist

<u>Attachment</u>: Figure 1 Site Map Figure 2 USGS Topographic Map

North Carolina Department of Natural and Cultural Resources

State Historic Preservation Office

Ramona M. Bartos, Administrator

Governor Roy Cooper Secretary Susi H. Hamilton

August 16, 2018

Carolyn Lanza Wildlands Engineering 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

Re: Bug Headwaters Mitigation Site, Wilkes County, ER 18-1614

Dear Ms. Lanza:

Thank you for your letter of July 11, 2018, concerning the above project.

We have conducted a review of the project and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the project as proposed.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 919-807-6579 or <u>environmental.review@ncdcr.gov</u>. In all future communication concerning this project, please cite the above referenced tracking number.

Sincerely,

Rence Gledhill-Earley

Ramona M. Bartos

Office of Archives and History Deputy Secretary Kevin Cherry

August 15, 2018

Mr. Russell Townsend Tribal Historic Preservation Officer Eastern Band of Cherokee Indians PO Box 455 Cherokee, NC 28719

Subject: Bug Headwaters Mitigation Site Wilkes County, North Carolina

Dear Mr. Townsend,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Bug Headwaters Mitigation Site. A USGS Topographic Map and an Overview Site Map showing the approximate project area are enclosed. The topographic figure was prepared from the Traphill, 7.5-Minute USGS Topographic Quadrangles.

The Bug Headwaters Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel impacts. Several sections of channel have been identified as significantly degraded. The project will include stream restoration and enhancement on Big Bugaboo Creek and four unnamed tributaries to Big Bugaboo Creek, which eventually drains to the Yadkin River. Wood Pond and Swaim Pond will also be removed as part of the restoration process. The site has historically been disturbed due to livestock use.

We ask that you review this site based on the attached information to determine the presence of any historic properties.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

Carolyn Lanea

Carolyn Lanza Environmental Scientist

<u>Attachment</u>: Figure 1 Site Map Figure 2 USGS Topographic Map

cc: via email Ms. Holly Austin, Federal Cultural Resource Law Liaison, EBCI Tribal Historic Preservation Office Mr. Donnie Brew, Federal Highway Administration Mr. Matthew Reid, Division of Mitigation Services

October 5, 2018

Ms. Sheila Bird Tribal Historic Preservation Office United Keetoowah Band of Cherokee Indians in Oklahoma PO Box 746 Tahlequah, OK 74465

Subject: Bug Headwaters Mitigation Site Wilkes County, North Carolina

Dear Ms. Bird,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Bug Headwaters Mitigation Site. A USGS Topographic Map and an Overview Site Map showing the approximate project area are enclosed. The topographic figure was prepared from the Traphill, 7.5-Minute USGS Topographic Quadrangles.

The Bug Headwaters Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel impacts. Several sections of channel have been identified as significantly degraded. The project will include stream restoration and enhancement on Big Bugaboo Creek and four unnamed tributaries to Big Bugaboo Creek, which eventually drains to the Yadkin River. Wood Pond and Swaim Pond will also be removed as part of the restoration process. The site has historically been disturbed due to livestock use.

We ask that you review this site based on the attached information to determine the presence of any historic properties.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

andres S. Eckardt

Andrea Eckardt Senior Environmental Scientist

<u>Attachment</u>: Figure 1 Site Map Figure 2 USGS Topographic Map

October 5, 2018

Ms. Elizabeth Toombs Tribal Historic Preservation Office Cherokee Nation PO Box 948 Tahlequah, OK 74465

Subject: Bug Headwaters Mitigation Site Wilkes County, North Carolina

Dear Ms. Toombs,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to archaeological or cultural resources associated with the proposed Bug Headwaters Mitigation Site. A USGS Topographic Map and an Overview Site Map showing the approximate project area are enclosed. The topographic figure was prepared from the Traphill, 7.5-Minute USGS Topographic Quadrangles.

The Bug Headwaters Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel impacts. Several sections of channel have been identified as significantly degraded. The project will include stream restoration and enhancement on Big Bugaboo Creek and four unnamed tributaries to Big Bugaboo Creek, which eventually drains to the Yadkin River. Wood Pond and Swaim Pond will also be removed as part of the restoration process. The site has historically been disturbed due to livestock use.

We ask that you review this site based on the attached information to determine the presence of any historic properties.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

andres S. Eckardt

Andrea Eckardt Senior Environmental Scientist

<u>Attachment</u>: Figure 1 Site Map Figure 2 USGS Topographic Map

Andrea Eckardt

From:	Elizabeth Toombs <elizabeth-toombs@cherokee.org></elizabeth-toombs@cherokee.org>
Sent:	Friday, November 02, 2018 3:31 PM
То:	Andrea Eckardt
Subject:	RE: Information Request: Bug Headwaters and Lyon Hills Mitigation Sites

Good Afternoon, Ms. Eckardt:

Many thanks for the follow-up email. While Wilkes County is within Cherokee Nation's Area of Interest, both the Bug Headwaters and Lyon Hills Mitigation Sites are outside the Cherokee Nation's Area of Interest. Thus, this Office respectfully defers to federally recognized Tribes that have an interest in this landbase.

Many thanks for the opportunity to comment upon this proposed undertaking. Please contact me if there are any questions or concerns.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer Cherokee Nation Tribal Historic Preservation Office PO Box 948 Tahlequah, OK 74465-0948 918.453.5389

From: Andrea Eckardt [mailto:aeckardt@wildlandseng.com]
Sent: Friday, November 2, 2018 1:05 PM
To: Elizabeth Toombs <elizabeth-toombs@cherokee.org>
Subject: <EXTERNAL> RE: Information Request: Bug Headwaters and Lyon Hills Mitigation Sites

Elizabeth-

We spoke yesterday about where to email the correspondence for Bug Headwaters and Lyon Hills. I just thought it might be easier if I sent an email so you would have the email address to reply to.

Have a great weekend,

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

From: Elizabeth Toombs <<u>elizabeth-toombs@cherokee.org</u>>
Sent: Tuesday, October 16, 2018 4:49 PM
To: Andrea Eckardt <<u>aeckardt@wildlandseng.com</u>>
Subject: RE: Information Request: Bug Headwaters and Lyon Hills Mitigation Sites

Thanks so much, Ms. Eckardt.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer Cherokee Nation Tribal Historic Preservation Office PO Box 948 Tahlequah, OK 74465-0948 918.453.5389

From: Andrea Eckardt [mailto:aeckardt@wildlandseng.com]
Sent: Tuesday, October 16, 2018 8:23 AM
To: Elizabeth Toombs <<u>elizabeth-toombs@cherokee.org</u>>
Subject: <EXTERNAL> RE: Information Request: Bug Headwaters and Lyon Hills Mitigation Sites

The contact is Donnie Brew. Below is his contact information.

Donnie Brew *Preconstruction & Environment Engineer* Federal Highway Administration 310 New Bern Ave, Suite 410 Raleigh, NC 27601 <u>donnie.brew@dot.gov</u> 919-747-7017

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

From: Elizabeth Toombs <<u>elizabeth-toombs@cherokee.org</u>>
Sent: Tuesday, October 16, 2018 9:20 AM
To: Andrea Eckardt <<u>aeckardt@wildlandseng.com</u>>
Subject: RE: Information Request: Bug Headwaters and Lyon Hills Mitigation Sites

Many thanks for the details, Ms. Eckardt. To follow-up, who is your contact for FHWA, North Carolina division?

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer Cherokee Nation Tribal Historic Preservation Office PO Box 948 Tahlequah, OK 74465-0948 918.453.5389

From: Andrea Eckardt [mailto:aeckardt@wildlandseng.com]
Sent: Tuesday, October 16, 2018 7:17 AM
To: Elizabeth Toombs <<u>elizabeth-toombs@cherokee.org</u>>
Subject: <EXTERNAL> RE: Information Request: Bug Headwaters and Lyon Hills Mitigation Sites

This is a NC Division of Mitigation Services project, so we are working on behalf of the Federal Highway Administration in this case.

Andrea

Andrea S. Eckardt | Senior Environmental Planner 704.332.7754 x101

From: Elizabeth Toombs <<u>elizabeth-toombs@cherokee.org</u>>
Sent: Monday, October 15, 2018 6:00 PM
To: Andrea Eckardt <<u>aeckardt@wildlandseng.com</u>>
Subject: Information Request: Bug Headwaters and Lyon Hills Mitigation Sites

Good Afternoon, Ms. Eckardt:

This Office recently received two review requests for Bug Headwaters and Lyon Hills Mitigation Sites, and I have a follow-up question. Is Wildlands Engineering working on behalf of a federal agency or grant program?

Many thanks for your time and any clarification.

Wado,

Elizabeth Toombs, Tribal Historic Preservation Officer Cherokee Nation Tribal Historic Preservation Office PO Box 948 Tahlequah, OK 74465-0948 918.453.5389

July 11, 2018

Marella Buncick US Fish and Wildlife Service Asheville Field Office 160 Zillicoa Street Asheville, NC 28801

Subject:Bug Headwaters Mitigation SiteWilkes County, North Carolina

Dear Ms. Buncick,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to endangered species, migratory birds, or other trust resources associated with the proposed Bug Headwaters Mitigation Site. A USGS Topographic Map and an Overview Site Map showing the approximate project area are enclosed. The topographic figure was prepared from the Traphill, 7.5-Minute USGS Topographic Quadrangles.

The Bug Headwaters Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel impacts. Several sections of channel have been identified as significantly degraded. The project will include stream restoration and enhancement on Big Bugaboo Creek and four unnamed tributaries to Big Bugaboo Creek, which eventually drains to the Yadkin River. Wood Pond and Swaim Pond will also be removed as part of the restoration process. The site has historically been disturbed due to livestock use.

According to your website (https://www.fws.gov/raleigh/species/cntylist/wilkes.html) the threatened or endangered species for Wilkes County are: the bog turtle (*Glyptemys muhlenbergii*), Northern long-eared bat (*Myotis septentrionalis*), and the rusty-patched bumble bee (*bombus affinis*). If we have not heard from you in 30 days, we will assume that you do not have any comments regarding associated laws and that you do not have any information relevant to this project at the current time.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

Carolyn Lanza

Carolyn Lanza Environmental Scientist

<u>Attachment</u>: Figure 1 Site Map Figure 2 USGS Topographic Map

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form

Federal agencies should use this form for the optional streamlined consultation framework for the northern longeared bat (NLEB). This framework allows federal agencies to rely upon the U.S. Fish and Wildlife Service's (USFWS) January 5, 2016, intra-Service Programmatic Biological Opinion (BO) on the final 4(d) rule for the NLEB for section 7(a)(2) compliance by: (1) notifying the USFWS that an action agency will use the streamlined framework; (2) describing the project with sufficient detail to support the required determination; and (3) enabling the USFWS to track effects and determine if reinitiation of consultation is required per 50 CFR 402.16.

This form is not necessary if an agency determines that a proposed action will have no effect to the NLEB or if the USFWS has concurred in writing with an agency's determination that a proposed action may affect, but is not likely to adversely affect the NLEB (i.e., the standard informal consultation process). Actions that may cause prohibited incidental take require separate formal consultation. Providing this information does not address section 7(a)(2) compliance for any other listed species.

Info	rmation to Determine 4(d) Rule Compliance:	YES	NO
1.	Does the project occur wholly outside of the WNS Zone ¹ ?		\boxtimes
2.	Have you contacted the appropriate agency ² to determine if your project is near known hibernacula or maternity roost trees?	\boxtimes	
3.	Could the project disturb hibernating NLEBs in a known hibernaculum?		\boxtimes
4.	Could the project alter the entrance or interior environment of a known hibernaculum?		\boxtimes
5.	Does the project remove any trees within 0.25 miles of a known hibernaculum at any time of year?		\boxtimes
6.	Would the project cut or destroy known occupied maternity roost trees, or any other trees within a 150-foot radius from the maternity roost tree from June 1 through July 31.		

You are eligible to use this form if you have answered yes to question #1 <u>or</u> yes to question #2 <u>and</u> no to questions 3, 4, 5 and 6. The remainder of the form will be used by the USFWS to track our assumptions in the BO.

Agency and Applicant³ (Name, Email, Phone No.): Carolyn Lanza, <u>clanza@wildlandseng.com</u>, 919-851-9986 ext 113 Donnie Brew, Donnie.brew@dot.gov, 919-747-7017

Project Name: Bug Headwaters Mitigation Site

Project Location (include coordinates if known): 36°19'24.7"N 80°58'59.0"W

Basic Project Description (provide narrative below or attach additional information):

The Bug Headwaters mitigation site is a stream mitigation project located approximately 9 miles northwest of Elkin and 5.5 miles South of Roaring Gap in Wilkes County. The site is located on three parcels by two different families and is used for agriculture (primarily livestock production). The project includes Big Bugaboo Creek and 5 unnamed tributaries for a total of 8,375 linear feet of stream. The project will provide stream mitigation units to the Division of Mitigation Services in the

¹ http://www.fws.gov/midwest/endangered/mammals/nleb/pdf/WNSZone.pdf

² See http://www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html

³ If applicable - only needed for federal actions with applicants (e.g., for a permit, etc.) who are party to the consultation.

Yadkin River Basin (03040101). Construction of the stream restoration project will include some tree removal (>3"DBH) approximately 2.10 acres.

General Project Information	YES	NO
Does the project occur within 0.25 miles of a known hibernaculum?		\boxtimes
Does the project occur within 150 feet of a known maternity roost tree?		\boxtimes
Does the project include forest conversion ⁴ ? (if yes, report acreage below)		
Estimated total acres of forest conversion	2.10) ac
If known, estimated acres ⁵ of forest conversion from April 1 to October 31	2.10) ac
If known, estimated acres of forest conversion from June 1 to July 316		
Does the project include timber harvest? (if yes, report acreage below)		\boxtimes
Estimated total acres of timber harvest		
If known, estimated acres of timber harvest from April 1 to October 31		
If known, estimated acres of timber harvest from June 1 to July 31		
Does the project include prescribed fire? (if yes, report acreage below)		\boxtimes
Estimated total acres of prescribed fire		
If known, estimated acres of prescribed fire from April 1 to October 31		
If known, estimated acres of prescribed fire from June 1 to July 31		
Does the project install new wind turbines? (if yes, report capacity in MW below)		\boxtimes
Estimated wind capacity (MW)		

Agency Determination:

By signing this form, the action agency determines that this project may affect the NLEB, but that any resulting incidental take of the NLEB is not prohibited by the final 4(d) rule.

If the USFWS does not respond within 30 days from submittal of this form, the action agency may presume that its determination is informed by the best available information and that its project responsibilities under 7(a)(2) with respect to the NLEB are fulfilled through the USFWS January 5, 2016, Programmatic BO. The action agency will update this determination annually for multi-year activities.

The action agency understands that the USFWS presumes that all activities are implemented as described herein. The action agency will promptly report any departures from the described activities to the appropriate USFWS Field Office. The action agency will provide the appropriate USFWS Field Office with the results of any surveys conducted for the NLEB. Involved parties will promptly notify the appropriate USFWS Field Office upon finding a dead, injured, or sick NLEB.

Mabro Date Submitted: 9-20-18 Signature:

⁴ Any activity that temporarily or permanently removes suitable forested habitat, including, but not limited to, tree removal from development, energy production and transmission, mining, agriculture, etc. (see page 48 of the BO).

⁵ If the project removes less than 10 trees and the acreage is unknown, report the acreage as less than 0.1 acre.

⁶ If the activity includes tree clearing in June and July, also include those acreage in April to October.

From:	Brew, Donnie (FHWA)
То:	Marella Buncick@fws.gov
Cc:	<u>Reid, Matthew; Carolyn Lanza; Andrea Eckardt</u>
Subject:	Bug Headwaters site DMS_mitigation project_Wilkes County_NLEB 4(d) rule consultation
Date:	Friday, September 21, 2018 3:34:50 PM
Attachments:	<u>NLEB 4(d) rule streamlined consultation form Bug Headwaters site 9-20-18.pdf</u> <u>Fig1_Site Map.pdf</u> <u>Fig2_USGS_Bug.pdf</u>

Good afternoon Marella,

The purpose of this message is to notify your office that FHWA will use the streamlined consultation framework for the Bug Headwaters Mitigation Site in Wilkes County, NC.

Attached is a completed NLEB 4(d) Rule Streamlined Consultation form, as well as site maps/figures.

Thank you and have a great weekend,

Donnie

Notifying the Service Under the Framework

Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form

Federal agencies (or designated non-federal representatives) should use the Northern Long-Eared Bat 4(d) Rule Streamlined Consultation form to notify the Service of their project and meet the requirements of the framework.

<u>Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form</u> (Word document)

Information requested in the Northern Long-Eared Bat 4(d) Rule Streamlined Consultation Form serves to

(1) notify the field office that an action agency will use the streamlined framework;

(2) describe the project with sufficient detail to support the required determination; and

(3) enable the USFWS to track effects and determine if reinitiation of consultation for the 4(d) rule is required. This form requests the minimum amount of information required for the Service to be able to track this information.

Providing information in the Streamlined Consultation Form does not address section 7(a)(2) compliance for any other listed species.

Donnie Brew Preconstruction & Environment Engineer Federal Highway Administration 310 New Bern Ave, Suite 410 Raleigh, NC 27601 donnie.brew@dot.gov 919-747-7017

Please consider the environment before printing this email.

U.S. Department of Agriculture

FARMLAND CONVERSION IMPACT RATING

PART I (To be completed by Federal Agency)		Date Of La	and Evaluation R	eques	t 7/27/18			
Name Of Project Bug Headwaters Mitigation Si	Federal Ag	Federal Agency Involved Wildlands Engineering, Inc						
Proposed Land Use Stream Mitigation Site	County An	^{d State} Wilke	es Coi	unty, NC				
PART II (To be completed by NRCS)		Date Requ	lest Received By	NRC	S 7/27/18			
Does the site contain prime, unique, statewide (If no, the FPPA does not apply do not comp			No	Acres Irrigate none	ed Average F 114 ac			
Major Crop(s) CORN	Farmable Land In 0 Acres: 119,99	Govt. Jurisdictio 8 acres	n % 25			armland As De 65,591 acres	efined in FPPA	
Name Of Land Evaluation System Used Wilkes Co., NC LESA	Name Of Local Site N/A	e Assessment S	System		August 27	valuation Retur , 2018 by eN	•	
PART III (To be completed by Federal Agency)			Cite A			Site Rating	Cita D	
A. Total Acres To Be Converted Directly			Site A 16.7		Site B	Site C	Site D	
B. Total Acres To Be Converted Indirectly			10.7	-				
C. Total Acres In Site			16.7	0.0	1	0.0	0.0	
PART IV (To be completed by NRCS) Land Eval	uation Information		10.7	0.0			010	
A. Total Acres Prime And Unique Farmland			8.3	_				
B. Total Acres Statewide And Local Important	Farmland		0.0	-				
C. Percentage Of Farmland In County Or Loca		Converted	0.0127					
D. Percentage Of Farmland In Govt. Jurisdiction Wit			11.7					
 PART V (To be completed by NRCS) Land Evalue Relative Value Of Farmland To Be Converse PART VI (To be completed by Federal Agency) Site Assessment Criteria (These criteria are explained in 	rted (Scale of 0 to	100 Points) Maximum Points	62	0		0	0	
1. Area In Nonurban Use		15	15					
2. Perimeter In Nonurban Use		10	10					
3. Percent Of Site Being Farmed		20	20					
4. Protection Provided By State And Local Go	vernment	20	20					
5. Distance From Urban Builtup Area		15	10					
6. Distance To Urban Support Services		15	0					
7. Size Of Present Farm Unit Compared To A	verage	10	5					
8. Creation Of Nonfarmable Farmland		10	5					
9. Availability Of Farm Support Services		5	0					
10. On-Farm Investments		20	0					
11. Effects Of Conversion On Farm Support Se		10						
12. Compatibility With Existing Agricultural Use		10						
TOTAL SITE ASSESSMENT POINTS		160	85	0		0	0	
PART VII (To be completed by Federal Agency)								
Relative Value Of Farmland (From Part V)	100	62	0		0	0		
Total Site Assessment (From Part VI above or a loca site assessment)	1	160	85	0		0	0	
TOTAL POINTS (Total of above 2 lines)		260	147	0		0	0	
Site Selected:	Date Of Selection			Wa		e Assessment s	Used? No 🗖	

Reason For Selection:

Milton,

Attached is the completed Farmland Conversion Impact Rating for Bug Headwaters Stream Mitigation Site for your files.

Thank you for your help,

Carolyn Lanza | *Environmental Scientist* **O**: 919.851.9986 x113 **M**: 313.969.7318

Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

From: Cortes, Milton - NRCS, Raleigh, NC <Milton.Cortes@nc.usda.gov>
Sent: Monday, August 27, 2018 4:47 PM
To: Carolyn Lanza <clanza@wildlandseng.com>
Subject: AD1006 Form - Bug Headwaters Mitigation Site - Wilkes County, NC
Importance: High

Carolyn;

Please, find attached the Farmland Conversion Impact Rating evaluation for Bug Headwaters Stream Mitigation Site.

Pease let us know if we can be of further assistance.

Best Regards;

Milton Cortes Acting State Soil Scientist Natural Resources Conservation Service 4407 Bland Rd, Suite 117 Raleigh, NC 27609 Phone: 919-873-2171 milton.cortes@nc.usda.gov

To: Cortes, Milton - NRCS, Raleigh, NC <<u>Milton.Cortes@nc.usda.gov</u>>
 Subject: Request for AD1006 Form - Bug Headwaters Mitigation Site - Wilkes County, NC

Milton,

I have a request for a completed AD-1006 form for a NCDENR Division of Mitigation Services (DMS) stream restoration project (Bug Headwaters Mitigation Site) located in Wilkes County. Please find a Soils Map attached in addition to the AD-1006 form with Parts I and III filled out. The soil breakdown is included on the Soils Map.

Thank you for your assistance and please let me know if you need any additional information.

Carolyn Lanza | *Environmental Scientist* **O**: 919.851.9986 x113 **M**: 313.969.7318

Wildlands Engineering, Inc.

312 West Millbrook Road, Suite 225 Raleigh, NC 27609

This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.

July 11, 2018

Shannon Deaton North Carolina Wildlife Resource Commission Division of Inland Fisheries 1721 Mail Service Center Raleigh, NC 27699

Subject: Bug Headwaters Mitigation Site Wilkes County, North Carolina

Dear Ms. Deaton,

Wildlands Engineering, Inc. requests review and comment on any possible issues that might emerge with respect to fish and wildlife issues associated with the proposed Bug Headwaters Mitigation Site. A USGS Topographic Map and an Overview Site Map showing the approximate project area are enclosed. The topographic figure was prepared from the Traphill, 7.5-Minute USGS Topographic Quadrangles.

The Bug Headwaters Mitigation Site is being developed to provide in-kind mitigation for unavoidable stream channel impacts. Several sections of channel have been identified as significantly degraded. The project will include stream restoration and enhancement on Big Bugaboo Creek and four unnamed tributaries to Big Bugaboo Creek, which eventually drains to the Yadkin River. Wood Pond and Swaim Pond will also be removed as part of the restoration process. The site has historically been disturbed due to livestock use.

We thank you in advance for your timely response and cooperation. Please feel free to contact us with any questions that you may have concerning this project.

Sincerely,

Carolyn Lanca

Carolyn Lanza Environmental Scientist

<u>Attachment</u>: Figure 1 Site Map Figure 2 USGS Topographic Map

➢ North Carolina Wildlife Resources Commission

Gordon Myers, Executive Director

August 7, 2018

Carolyn Lanza Wildlands Engineering 1430 S. Mint Street, Suite 104 Charlotte, NC 28203

SUBJECT: Bug Headwaters Mitigation Site

Dear Ms. Lanza:

Biologists with the North Carolina Wildlife Resources Commission (NCWRC) received your July 11, 2018 letter regarding plans for a stream restoration project on Big Bugaboo Creek and unnamed tributaries in Wilkes County. You requested review and comment on any possible issues that might emerge with respect to fish and wildlife associated with the project. Our comments on this project are offered for your consideration under provisions of the Clean Water Act of 1977 (33 U.S.C. 466 et. seq.) and Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661-667d).

Details were not provided in the letter on design nor the size of the project. The project is proposed as a mitigation project and will involve stream enhancement and restoration.

This project should not impact wild trout resources. We recommend that riparian buffers that are to be reestablished be as wide as possible, given site constraints and landowner needs. NCWRC generally recommends a woody buffer of 100 feet on perennial streams to maximize the benefits of buffers, including bank stability, stream shading, treatment of overland runoff, and wildlife habitat.

Thank you for the opportunity to review and comment on this project. Please contact me at (828) 803-6054 if you have any questions about these comments.

Sincerely,

Indrea Delescie

Andrea Leslie Mountain Region Coordinator Habitat Conservation Program

Appendix 5

MEETING NOTES

MEETING:	IRT Site Walk
	Bug Headwaters Mitigation Site
	Yadkin 03040101; Wilkes County, NC
	DEQ Contract No. 7617
	DMS Project No. 100084
	Wildlands Project No. 005-02176
DATE:	Wednesday, September 26, 2018
LOCATION:	King Billings Road
	Traphill, NC

Attendees

Todd Tugwell, USACE Todd Bowers, USEPA Mac Haupt, DWR Paul Wiesner, DMS Matthew Reid, DMS Kirsten Ullman, DMS Periann Russell, DMS Shawn Wilkerson, Wildlands Jeff Keaton, Wildlands

Materials

• Wildlands Engineering Bug Headwaters Mitigation Site Technical Proposal dated March 28, 2018 (in response to RFP #16-007406)

Meeting Notes

Shawn Wilkerson of Wildlands Engineering, Inc. (Wildlands) led the group on a tour of the proposed mitigation site on September 26, 2018. The purpose of the tour was to present the site to a group of IRT members and to get input into the management/mitigation options proposed for the site. During the tour, the group discussed the approaches proposed by Wildlands and the design options they felt would be most appropriate to enhance and restore the streams on the site.

1. UT2

- The tour began with UT2 Reach 2. There was a considerable amount of discussion on the appropriate approach for this reach. Todd raised concerns about raising the bed for Priority 1 restoration while Mac said that he did not have a problem with the proposed restoration approach. Shawn suggested beginning the reach with restoration, tying into some existing bedrock features, and then transitioning back to a Priority 1 below the bedrock. The plan is to move forward with restoration of this reach with possibly a short section of E1 at the bedrock section.
- There is also a short tributary to Reach 2 where Wildlands proposed to put a BMP. Several members of the group commented that much of that channel now appears to be jurisdictional.

Shawn indicated that when the site assessment was done, this channel had been called ephemeral. Given this situation, the group agreed that the best approach would be to buffer the wetland pocket, stabilize side slopes of the pocket wetland and complete fence out cattle and plant the small tributary for E2 credit. This reach will be referred to as UT2B.

• Next the group looked at UT2 Reach 1. Shawn explained that this reach, which was originally proposed for enhancement 2, is not as incised and is in a steeper, colluvial valley. Mac stated that he sees work that needs to be done and that he could see this reach being more enhancement 1 rather than enhancement 2. Todd said that he didn't see a lot of difference between Reach 1 and Reach 2 and seemed to agree that enhancement 1 might be more appropriate. There is also a BMP proposed for the top of this reach that would likely be an ephemeral step pool conveyance. Wildlands agreed to look at this reach in more detail before deciding the level of intervention but that E1 maybe appropriate.

2. UT2A

The next stream the group looked at was UT2A which is a small tributary that flows into UT2. This reach was proposed as enhancement 1 and was intended to be a mix of enhancement 2 approaches and some sections of restoration with an overall ratio of 1.5:1. Mac said that he thought the degree of intervention on this reach would support a restoration approach. Todd agreed. Wildlands commented that due to the headwater nature of the stream, that we didn't want to push on the ratios substantially but if a full restoration approach appeared necessary, that 1:1 credit proposal will be considered, and would be presented in the mitigation plan. There is a BMP proposed for the upstream end of this reach. Todd said to make sure that BMPs are not built in wetlands at headwaters or on a jurisdictional part of the stream. He said that he doesn't think a BMP would be necessary for this reach since the existing wetland is functioning as a BMP. In this case, protecting the wetland with the conservation easement and starting the stream work below the wetland would be ideal. Wildlands agreed to this approach.

3. **UT1**

 Next Shawn showed the group a small headwaters stream called UT1 that has been badly trampled by cattle. The stream is in very bad condition and the group agreed that restoration is the best mitigation approach. Some side channels have formed from cattle wallowing and Shawn indicated that those would be plugged to prevent draining adjacent wetlands but probably not filled. The conservation easement around this tributary will be extra wide to protect adjacent wetland areas. There is a BMP proposed at the upstream end.

4. Big Bugaboo Creek

- The review of Big Bugaboo Creek began with Reach 1 which is adjacent to UT1. This reach is in similar condition to UT1 and the group agreed that restoration of this reach is appropriate. There is a BMP proposed at the upstream end. Todd said that for all BMPs, before the BMPs are designed, jurisdictional determinations must be completed to ensure that the BMPs will be installed above the jurisdictional extents of the reaches.
- The next reach reviewed was Big Bugaboo Creek Reach 2 which extends from the confluence of Reach 1 and UT1 to just upstream of the existing pond called Wood Pond. This reach is less incised, less impacted by cattle, and has less erosion on the banks. The proposed approach for this reach is enhancement 2 and Mac and Todd again pointed out that an E1 approach could be

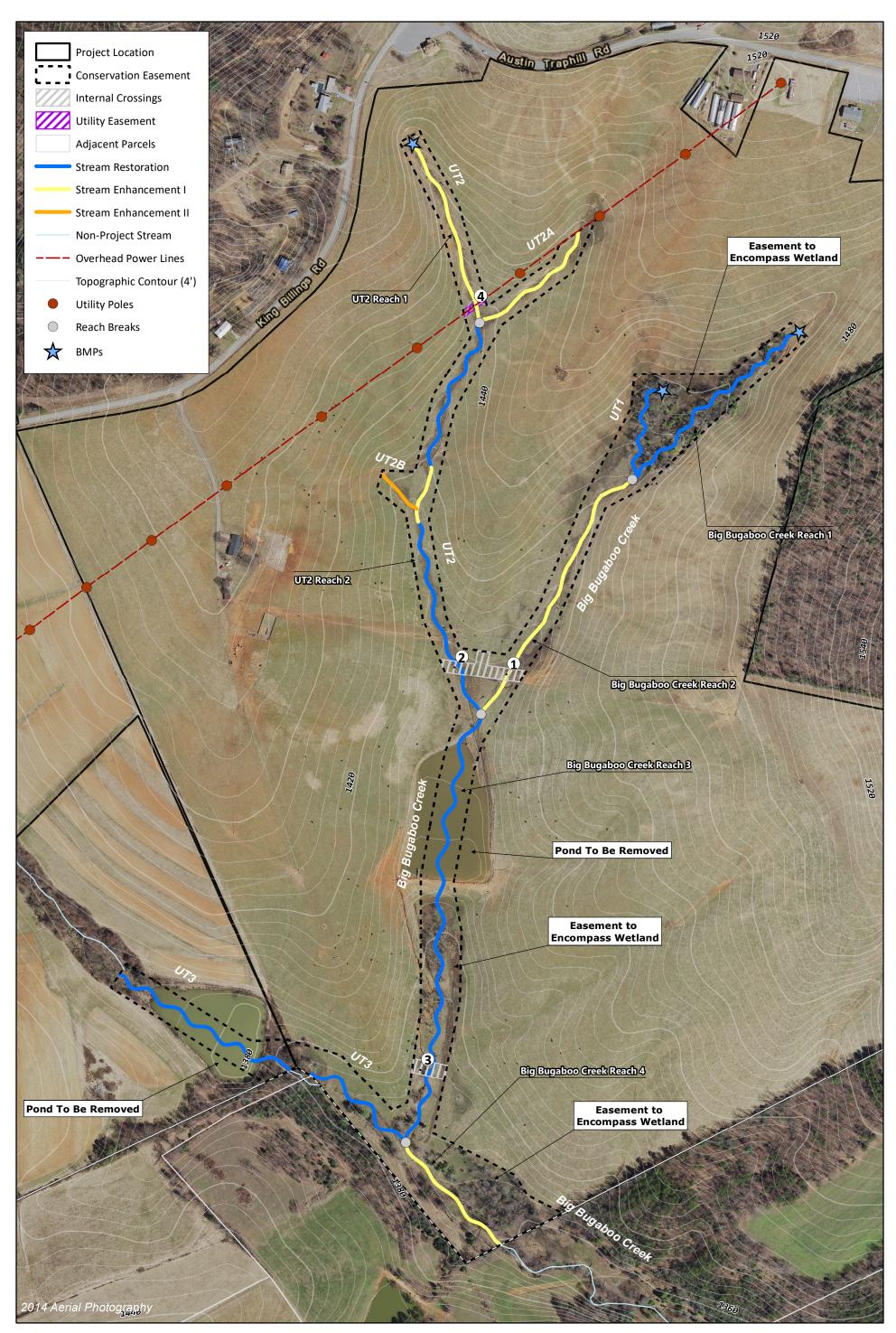
appropriate. Shawn pointed out that there is a crossing near the bottom of Reach 2 that will cross both Reach 2 and UT2 Reach 2. Wildlands will consider an E1 approach and will justify in the mitigation plan.

- Big Bugaboo Reach 3 begins just above the pond, continues through the Wood Pond, and then continues for several hundred feet downstream of the pond to the confluence with UT3. The dam will be removed and the stream will be restored through the pond bed with excess sediment removed. The section below the pond transitions from being narrow and incised to being overwide with a thalweg channel moving through sediment and aquatic vegetation. There was some discussion about the approach along the over-wide section, however after more closely considered, it was agreed that the restoration was the best approach. There is a crossing planned near the downstream end of Reach 3.
- Big Bugaboo Reach 4 extends from the confluence of Big Bugaboo and UT3 to the southern property boundary (approximately. This reach is significantly larger and appears to have been channelized. The channel is extensively eroded and somewhat incised, with both fluvial erosion and cattle trampling present on both banks. Mass wasting is occurring in some locations. This reach was proposed as restoration. There is a fairly large wetland area on the left floodplain that is partially wooded but severely trampled by cattle. Shawn said that the conservation easement will encompass this wetland. There was some discussion about the amount of room needed for a meandering channel considering the adjacent wetland and the need for full restoration of this reach. After further consideration, Wildlands has changed the proposed approach to enhancement 1 for this reach. This work will involve building an meandering offline channel to tie into the upstream restoration and then transitioning to an online channel at the existing bed grade with a floodplain bench to tie into the downstream end of the project. The online channel banks will be stabilized.

5. UT3

• The last stream that the group toured was UT3. This stream begins above a small pond (called the Swaim Pond) on an adjacent property. Shawn explained that the restoration of this reach would begin with the removal of the pond and that the landowner did not want the section above the pond to be put into easement. In addition, the section above the pond is not eroded and that landowner does not graze cattle on the property. The restoration will extend down to the confluence with Big Bugaboo Creek. Shawn explained that the dam is failing, and the pond needs to be removed. He also explained that there is a small section on the stream downstream of the pond where a landowner on the right side of the stream owns a small access route to the stream and this landowner would not sell an easement on this very short section. Shawn said the easement on the left, which is on the Wood property, should continue through this section, even though it is not shown on the map, so that only one side of the stream would not be under easement. Shawn said that Wildlands has an agreement with the non-participating landowner that work can be done to the stream to restore it. The group agreed that restoration would be the correct approach for this reach. Todd also asked that a small wetland swale on the left floodplain be captured and included in the easement and Shawn said that it would be.

The approaches and ratios described above were agreed upon at this IRT field visit and will be utilized during the project design. Wildlands and DMS understand that the final design approach and crediting rationale must be justified in the Mitigation Plan. A revised asset table with updated approaches and agreed upon credit ratios is shown below. A revised concept map showing the updated approaches for each project reach is attached.


These meeting minutes were prepared by Jeff Keaton October1, 2018 and reviewed by Shawn Wilkerson on October 4, 2018 and represent the authors' interpretation of events.

	Stream Credits				
Reach	Management Objectives	Type of Mitigation	Length (feet) ¹	Ratio	Stream Credits
	RESTORATION				
Big Bugaboo Creek – Reach 1	Restore appropriate dimension, pattern, and profile. Install habitat structures, allow bankfull floodplain access. Enhance native riparian buffer, exclude cattle with fencing.	Restoration	863	1:1	863
Big Bugaboo Creek – Reach 3	Restore appropriate dimension, pattern, and profile. Install habitat structures, allow bankfull floodplain access. Establish native riparian buffer, exclude future cattle with fencing. Treat invasives.	Restoration	1,750	1:1	1,750
UT1	Restore appropriate dimension, pattern, and profile. Install habitat structures, allow bankfull floodplain access. Establish native riparian buffer, exclude future cattle with fencing.	Restoration	220	1:1	220
UT2 Reach 2	Restore appropriate dimension, pattern, and profile. This reach includes a 150 ft. section of EI to tie into existing bedrock. Install habitat structures, allow bankfull floodplain access. Establish native riparian buffer, exclude future cattle with fencing. Treat invasives.	Restoration (150 ft. of El)	1,532	1:1 (1.5:1 for El)	1,482
UT3	Restore appropriate dimension, pattern, and profile. Install habitat structures, allow bankfull floodplain access. Establish native riparian buffer, exclude future cattle with fencing.	Restoration	1,400	1:1	1,400
	Rest	oration Subtotal	5,765		5,715
	ENHANCEMENT I				
UT2 Reach 1	Perform minor bank grading where necessary. Establish native riparian buffer, exclude future cattle with fencing. Treat invasives.	Enhancement I	665	1.5:1	443
UT2A	Restore appropriate dimension, pattern, and profile in areas where stream is heavily impacted. Use lighter intervention mainly consisting of minor bank grading in areas where stream is more stable. Install habitat structures, allow bankfull floodplain access. Establish native riparian buffer, exclude future cattle with fencing. Treat invasives.	Enhancement I	517	1.5:1	345
Big Bugaboo Creek – Reach 2	Restore appropriate dimension, pattern, and profile in areas where stream is heavily impacted. Use lighter intervention mainly consisting of minor bank grading in areas where stream is more stable. Install habitat structures, allow bankfull floodplain access. Establish native riparian buffer, exclude future cattle with fencing. Treat invasives.	Enhancement I	990	1.5:1	660
Big Bugaboo	Restore appropriate dimension, pattern, and profile at upstream end and transition down to existing bed grade with an online channel with floodplain bench. Install habitat	Enhancement I	438	1.5:1	292

	Stream Credits										
Reach	Management Objectives	Type of Mitigation	Length (feet) ¹	Ratio	Stream Credits						
Creek – Reach 4	structures, allow bankfull floodplain access. Establish native riparian buffer, exclude future cattle with fencing. Treat invasives.										
	Enhanc	ement I Subtotal	2,610		1,740						
	ENHANCEMENT II										
UT2B	Establish native woody riparian buffer, exclude cattle, and protect headwater wetland.	Enhancement II	168	2.5:1	67						
	Enhanc	ement I Subtotal	168		67						
		8,543 LF		7,522 Cool Stream Credits							

0	150	300		600 Feet

Figure 6 Conceptual Plan Bug Headwaters Mitigation Site Yadkin Basin (03040101)

Wilkes County, NC

Appendix 6

			Exist	ing Condit	tions Geor	norphic Pa	arameters							
Parameter	Notation	Units		ooo Creek ch 1		boo Creek ch 2		ooo Creek ch 3	Big Bugat Rea	ooo Creek	U.	F1		
rarameter	Notation	Onits	min	max	min	max	min	max	min	max	min	max		
stream type	-	-	F4	4b	E	34	B4		F4		B4			
drainage area	DA	sq mi	0.	06	0.	12	0.	31	0.	50	0.	01		
bankfull cross- sectional area	A _{bkf}	SF	3	.5	3	.4	6	.6	14	.1	2	7		
average velocity during bankfull event	V _{bkf}	fps	3	.1	4	.2	5	.3	3	.9	2.6			
width at bankfull	W _{bkf}	feet	11	1.3	4	.2	6	.0	18	8.6	11	6		
maximum depth at bankfull	d _{max}	feet	0	.6	1	.1	1	.4	1	.2	0	4		
mean depth at bankfull	d_{bkf}	feet	0	.3	0	.8	1	.1	0	.8	0	2		
bankfull width to depth ratio	w_{bkf}/d_{bkf}	-	36	5.3	5	.3	5	.4	24	.6	50	.7		
low bank height	-	feet	2	2	1	.7	3	.7	3	.2	2	2		
bank height ratio	BHR	-	3	.3	1	.6	2	.6	2	.7	5	0		
floodprone area width	W _{fpa}	feet	1	.4	1	.6	9	9	2	3	2	0		
entrenchment ratio	ER	-	1	.2	3	.9	1	.5	1	.2	1	7		
max pool depth at bankfull	d _{pool}	feet	0	.9	1	.2	1.7		1.2		0.5			
pool depth ratio	d_{pool}/d_{bkf}	-	3	.0	1.5		1.5		1.5		2	5		
pool width at bankfull	w _{pool}	feet	4	.9	7.6		5.7		10.0		3.3			
pool width ratio	w _{pool} /w _{bkf}	-	0	.4	1.8		1.0		0.5		0.3			
bankfull pool cross- sectional area	A _{pool}	SF	2	.9	4.7		5.4		9.1		1	1		
pool area ratio	A_{pool}/A_{bkf}	-	0	.8	1.4		0.8		0	0.6		4		
pool-pool spacing	р-р	feet	18	93	22	153	84	65	53	84				
pool-pool spacing ratio	p-p/W _{bkf}	-	1.6	8.2	5.2	36.4	14.0	10.8	2.8	4.5				
valley slope	S _{valley}	feet/foot	0.0	350	0.0	0.0216		0.0215		165	0.0	362		
channel slope	S _{channel}	feet/foot	0.0	330	0.0	0.0228		0.0228		0.0230		160	0.0	350
sinuosity	К	-	1.	04	1.	07	1.	01	1.	1.03		01		
belt width	w _{blt}	feet		-		-	9	11	18	24				
meander width ratio	w _{blt} /w _{bkf}	-		-		-	1.5	1.8	1.0	1.3				
meander length	L _m	feet		-		-	23	57	25	93				
meander length ratio	L _m /w _{bkf}	-		-		-	3.8	9.5	1.3	5.0				
linear wavelength	LW	-		-		-	25	55	23	78				
linear wavelength ratio	LW/w _{bkf}	-		-		-	4.2	9.2	1.2	4.2				
radius of curvature	R _c	feet		-		-	9	41	10	45				
radius of curvature ratio	R_c / w_{bkf}	-		-		-	1.5	6.8	0.5	2.4				

				Existi	ng Conditi	ons Geon	norphic Pa	rameters						
Parameter	Notation	Units	UT2 R	Reach 2	UT2 R	each 3	UT2 R	each 4	UT2 R	each 5	τU	'2A	U	гз
			min	max	min	max			min	max	min	max	min	max
stream type	-	-	E	84	В	4	В	4	F4	1b	A	4	G4	
drainage area	DA	sq mi	0	.03	0.	07	0.0	07	0.	10	0.	03	0.	15
bankfull cross- sectional area	A _{bkf}	SF		2	4	1	4	Ļ		1		2		5
average velocity during bankfull event	V _{bkf}	fps	3	3.8	3	.4	3.	4	3	.4	4	.4	4	.1
width at bankfull	W _{bkf}	feet		5	9	9	g)	9	9		5	-	7
maximum depth at bankfull	d_{max}	feet	C).7	0	.9	0.	9	0	.9	0	.6	1	.1
mean depth at bankfull	d_{bkf}	feet	C).5	0	.4	0.	4	0	.4	0	.4	0	.8
bankfull width to depth ratio	w_{bkf}/d_{bkf}	-	1	10	2	3	2	3	2	3	1	.1	8	3
low bank height	-	feet		1	3	.1	3.	1	3	.1	3	.1	2	.2
bank height ratio	BHR	-	1	L.4	3	.4	3.	4	3	.4	4	.8	2	.1
floodprone area width	W _{fpa}	feet		9	1	2	1	2	1	2	1	.2	9	9
entrenchment ratio	ER	-	1	L.8	1	.3	1.3		1	.3	2	.5	1.4	
max pool depth at bankfull	d _{pool}	feet		-	0.8		1.6		1.2		0.9		1	.4
pool depth ratio	d_{pool}/d_{bkf}	-		-	2.0		4.0		3.0		2.3		1	.8
pool width at bankfull	w _{pool}	feet		-	9	9	10		4		3		(5
pool width ratio	w _{pool} /w _{bkf}	-		-	1	.0	1.1		0.5		0.7		0	.9
bankfull pool cross- sectional area	A _{pool}	SF		-		1	8		4		2			7
pool area ratio	A_{pool}/A_{bkf}	-		-	1	.0	2.0		0.9		1	.1	1	.2
pool-pool spacing	р-р	feet		-	15	130	15	59	36	152	18	284	18	71
pool-pool spacing ratio	p-p/W _{bkf}	-		-	1.6	14.0	1.6	6.3	3.9	16.3	3.9	61.7	2.7	10.8
valley slope	S _{valley}	feet/foot	0.0	054	0.0	293	0.03	338	0.0	220	0.0	510	0.0	199
channel slope	S _{channel}	feet/foot	0.0	052	0.0	270	0.0	369	0.0	200	0.0490		0.0199	
sinuosity	К	-	1	l.1	1.	05	1.0)7	1.	01	1.	04	1.	04
belt width	W _{blt}	feet		-								-	8	15
meander width ratio	w _{blt} /w _{bkf}	-		-								-	1.2	2.3
meander length	L _m	feet		-			-			-		-	18	61
meander length ratio	L _m /w _{bkf}	-		-		-				-		-	2.7	9.2
linear wavelength	LW	-		-			-					-	14	29
linear wavelength ratio	LW/w _{bkf}	-		-					-		-		2.1	4.4
radius of curvature	R _c	feet		-							-		5	28
radius of curvature ratio	R _c / w _{bkf}	-		-								-	0.8	4.2

						Prop	osed Geo	morphic P	arameters										
		Units	Big Buga	iboo Creek I	Reach 1	Big Buga	ig Bugaboo Creek Reach 2 Big Bugaboo Creek			boo Creek	Creek Reach 3 Big Bugaboo Creek Reach 4					UT1			
Parameter	Notation		Typical Section	Min	Max	Typical Section	Min	Max	Typical Section	Min	Max	Typical Section	Min	Max	Typical Section	Min	Max		
stream type				B4			B4			C4			C4			B4			
drainage area	DA	sq mi	0.06		0.12			0.31		0.50			0.01						
design discharge	Q	cfs	12.4	-		20.4	20.4 -		34.0	-		48.3		-	3.9	3.9 -			
bankfull cross- sectional area	A _{bkf}	SF	3.3	-		6.0	-		8.2	-		10.3	-		1.4	-			
average velocity during bankfull event	V _{bkf}	fps	3.8	-		3.6		-	4.2		-	4.7		-	2.9	2.9 -			
width at bankfull	W _{bkf}	feet	6.5	-		9.0		-	10.4		-	11.8		-	4.2	4.2 -			
maximum depth at bankfull	d _{max}	feet	0.8	-		1.0		-	1.2		-	1.30		-	0.5		-		
mean depth at bankfull	d _{bkf}	feet	0.5	-		0.7		-	0.8		-	0.1		-	0.3		-		
bankfull width to depth ratio	w _{bkf} /d _{bkf}		13.0			13.5		-	13.0		-	14.0		-	13.0		-		
max depth ratio	d _{max} /d _{bkf}	feet	1.5	-		1.5		-	1.5		-	1.5		-	1.5		-		
bank height ratio	BHR		-	1.	.0	-	1	.0	1.0			-	1	.0	-	1	.0		
floodprone area width	w _{fpa}	feet	-	8	14	-	11	20	-	23	52	-	26	59	-	5	9		
entrenchment ratio	ER		-	1.2	2.2	-	1.2	2.2	-	2.2	5.0	-	2.2	5.0	-	1.2	2.2		
valley slope	S _{valley}	feet/foot		0.0346	ļ		0.0216	ļ		0.0208	ļ		0.0165	ļ		0.036	<u>.</u>		
channel slope	S _{chnl}	feet/foot	-	0.0315	0.0346	-	0.0196	0.0216	-	0.0173	0.0189	-	0.0127	0.0138	-	0.0329	0.0362		
riffle slope	S _{riffle}	feet/foot	-	0.0377	0.062	-	0.0236	0.039	-	0.0225	0.057	-	0.0165	0.0413	-	0.0395	0.065		
riffle slope ratio	S _{riffle} /S _{chnl}		-	1.2	1.8	-	1.2	1.8	-	1.3	3.0	-	1.3	3.0	-	1.2	1.8		
pool slope	Sp	feet/foot	-	0.000	0.1380	-	0.000	0.0086	-	0.000	0.0151	-	0.000	0.0113	-	0.000	0.0145		
pool slope ratio	S _p /S _{chnl}		-	0.00	0.40	-	0.00	0.40	-	0.0	0.80	-	0.0	0.80	-	0.0	0.40		
pool-pool spacing	L _{p-p}	feet	-	9	32.5	-	12.6	45	-	31.0	58.0	-	35	66	-	5.88	21		
pool spacing ratio	L _{p-p} /w _{bkf}		-	1.4	5.0	-	1.4	5.0	-	3.0	5.6	-	3.0	5.6	-	1.4	5.0		
pool cross-sectional area	A _{pool}	SF	-	6.6	9.8	-	12.0	18.0	-	18.8	24.5	-	23.6	30.8	-	2.7	4.1		
pool area ratio	A _{pool} /A _{bkf}		-	2.0	3.0	-	2.0	3.0	-	2.3	3.0	-	2.3	3.0	-	2.0	3.0		
maximum pool depth	d _{pool}	feet	-	1.0	1.8	-	1.3	2.3	-	2.4	3.1	-	2.6	3.5	-	0.6	1.1		
pool depth ratio	d _{pool} /d _{bkf}		-	2.0	3.5	-	2.0	3.5	-	3.0	4.0	-	3.0	4.0	-	2.0	3.5		
pool width at bankfull	w _{pool}	feet	-	7.8	9.1	-	10.8	12.6	-	12.5	15.6	-	14.2	17.7	-	5.0	5.9		
pool width ratio	w _{pool} /w _{bkf}		-	1.2	1.4	-	1.2	1.4	-	1.2	1.5	-	1.2	1.5	-	1.2	1.4		
sinuosity	к		-	1.()2	-	- 1.02		-	1.16		- 1.02		- 1		00			
belt width	w _{blt}	feet	-	-	-	-	-	-	-	26	83	-	-	-	-	-	-		
meander width ratio	w _{blt} /w _{bkf}		-	-	-	-	-	-	-	2.5	8.0	-	-	-	-	-	-		
linear wavelength (formerly meander length)	LW	feet	-	-	-	-	-	-	-	51	114	-	-	-	-	-	-		
linear wavelength ratio (formerly meander length ratio)	LW/w _{bkf}		-	-	-	-	-	-	-	5.0	11.0	-	-	-	-	-	-		
meander length	L _m	feet	-	-	-	-	-	-	-	57	137	-	-	-	-	-	-		
meander length ratio	L_m/W_{bkf}		-	-	-	-	-	-	-	5.5	13.2	-	-	-	-	-	-		
radius of curvature	R _c	feet	-	-	-	-	-	-	-	21	44	-	-	-	-	-	-		
radius of curvature ratio	R _c / w _{bkf}		-	-	-	-	-	-	-	2.0	4.2	-	-	-	-	-	-		

								Proposed	Geomorp	nic Param	eters									
Parameter	Notation	tation Units	Units		UT2 Reach 2		UT2 Reach 3		UT2 Reach 4		UT2 Reach 5			UT2A			UT3			
Faranieter	NOtation	Units	Typical Section	Min	Max	Typical Section	Min	Max	Typical Section	Min	Max	Typical Section	Min	Max	Typical Section	Min	Max	Typical Section	Min	Max
stream type				B4		B4		B4			C4b			B4a			C4b			
drainage area	DA	sq mi		0.03		0.07		0.07		0.10			0.03		0.15					
design discharge	Q	cfs	7.2	-		14.6		-	14.6		-	18.8		-	7.3		-	24.6		-
bankfull cross- sectional area	A _{bkf}	SF	2.1	-		3.8		-	3.8		-	5.5		-	2.0		-	6.8		-
average velocity during bankfull event	V _{bkf}	fps	3.4	-		3.9		-	3.9		-	3.4		-	3.7		-	3.7		-
width at bankfull	W _{bkf}	feet	5.3	-		7.1		-	7.1		-	8.8		-	5.1		-	9.5		-
maximum depth at bankfull	d _{max}	feet	0.6	-		0.8		-	0.8		-	0.9		-	0.60		-	1.1		-
mean depth at bankfull	d _{bkf}	feet	0.4	-		0.5		-	0.5		-	0.6		-	0.4		-	0.7		-
bankfull width to depth ratio	w_{bkf}/d_{bkf}		13.0	-		13.0		-	13.0		-	14.0		-	13.0		-	13.0		-
max depth ratio	d_{max}/d_{bkf}	feet	1.5	-		1.5		-	1.5		-	1.5		-	1.5		-	1.5		-
bank height ratio	BHR		-	1.	0	-	1	.0	-	1	.0	-	1	.0	-	1	.0	1.0		
floodprone area width	W _{fpa}	feet	-	6	12	-	16	36	-	16	36	-	19	44	-	6	11	-	21	48
entrenchment ratio	ER		-	1.2	2.2	-	2.2	5.0	-	2.2	5.0	-	2.2	5.0	-	1.3	2.2	-	2.2	5.0
valley slope	Svalley	feet/foot		0.0540			0.0293	93 0.0338			0.0220		0.0514		0.019					
channel slope	S _{chnl}	feet/foot	-	0.0493	0.0542	-	0.0244	0.0266	-	0.0282	0.0307	-	0.0183	0.0200	-	0.0454	0.0514	-	0.0142	0.0154
riffle slope	S _{riffle}	feet/foot	-	0.0591	0.098	-	0.0317	0.059	-	0.0366	0.068	-	0.0238	0.060	-	0.0561	0.093	-	0.0185	0.046
riffle slope ratio	S_{riffle}/S_{chnl}		-	1.2	1.8	-	1.3	2.2	-	1.3	2.2	-	1.3	3.0	-	1.2	1.8	-	1.3	3.0
pool slope	Sp	feet/foot	-	0.000	0.0217	-	0.000	0.0107	-	0.000	0.0123	-	0.000	0.0080	-	0.000	0.0925	-	0.000	0.0062
pool slope ratio	S_p/S_{chnl}		-	0.00	0.40	-	0.00	0.40	-	0.00	0.40	-	0.0	0.40	-	0.0	0.40	-	0.0	0.40
pool-pool spacing	L _{p-p}	feet	-	7	27	-	21	36	-	21	36	-	26.0	45.0	-	7	26	-	29	48
pool spacing ratio	$L_{p \cdot p} / W_{bkf}$		-	1.4	5.0	-	3.0	5.1	-	3.0	5.1	-	3.0	5.1	-	1.4	5.0	-	3.0	5.1
pool cross-sectional area	A _{pool}	SF	-	4.2	6.3	-	8.6	11.3	-	8.6	11.3	-	12.6	16.5	-	4.0	5.9	-	15.7	20.5
pool area ratio	A _{pool} /A _{bkf}		-	2.0	3.0	-	2.3	3.0	-	2.3	3.0	-	2.3	3.0	-	2.0	3.0	-	2.3	3.0
maximum pool depth	d _{pool}	feet	-	0.8	1.4	-	1.6	2.1	-	1.6	2.1	-	1.9	2.5	-	8.0	1.4	-	2.2	2.9
pool depth ratio	d _{pool} /d _{bkf}		-	2.0	3.5	-	3.0	4.0	-	3.0	4.0	-	3.0	4.0	-	2.0	3.5	-	3.0	4.0
pool width at bankfull	W _{pool}	feet	-	6.4	7.4	-	8.5	10.7	-	8.5	10.7	-	10.6	13.2	-	6.1	7.1	-	11.4	14.3
pool width ratio	w _{pool} /W _{bkf}		-	1.2	1.4	-	1.2	1.5	-	1.2	1.5	-	1.2	1.5	-	1.2	1.4	-	1.2	1.5
sinuosity	к		-	1.0	00	-	1.	04	-	1.	07	-	1.	06	-	1.	03	-	1.	.21
belt width	W _{blt}	feet	-	-	-	-	-	-	-	-	-	-	26	70	-	-	-	-	24	76
meander width ratio	w_{blt}/w_{bkf}		-	-	-	-	-	-	-	-	-	-	3.0	8.0	-	-	-	-	2.5	8.0
linear wavelength (formerly meander length)	LW	feet	-	-	-	-	-	-	-	-	-	-	44	97	-	-	-	-	48	105
linear wavelength ratio (formerly meander length ratio)	LW/w _{bkf}		-	-	-	-	-	-	-	-	-	-	5.0	11.0	-	-	-	-	5.0	11.0
meander length	L _m	feet	-	-	-	-	-	-	-	-	-	-	48	116	-	-	-	-	57	136
meander length ratio	L_m/W_{bkf}		-	-	-	-	-	-	-	-	-	-	5.5	13.2	-	-	-	-	6.0	14.3
radius of curvature	R _c	feet	-	-	-	-	-	-	-	-	-	-	17	26	-	-	-	-	18	29
radius of curvature ratio	R_c/w_{bkf}		-	-	-	-	-	-	-	-	-	-	1.9	3.0	-	-	-	-	1.9	3.0

Appendix 7

Credit Release Schedule

All credit releases will be based on the total credit generated as reported by the as-built survey of the mitigation site. Under no circumstances shall any mitigation project be debited until the necessary DA authorization has been received for its construction or the District Engineer (DE) has otherwise provided written approval for the project in the case where no DA authorization is required for construction of the mitigation project. The DE, in consultation with the Interagency Review Team (IRT), will determine if performance standards have been satisfied sufficiently to meet the requirements of the release schedules below. In cases where some performance standards have not been met, credits may still be released depending on the specifics of the case. Monitoring may be required to restart or be extended, depending on the extent to which the site fails to meet the specified performance standard. The release of project credits will be subject to the criteria described in the table below.

For ILF sites (including all NCDMS projects), no initial release of credits (Milestone 1) is provided because ILF programs utilized advance credits, so no initial release is necessary to help fund site construction. To account for this, the 15% credit release associated with the first milestone (bank establishment) is held until the second milestone, so that the total credits release at the second milestone is 30%. In order for NCDMS to receive the 30% release (shown in the schedules as Milestone 2), they must comply with the credit release requirements stated in Section IV(I)(3) of the approved NCDMS Instrument. The following conditions apply to the credit release schedules:

- A. A reserve of 10% of a site's total stream credits will be released after four bankfull events have occurred, in separate years, provided the channel is stable and all other performance standards are met. In the event that less than four bankfull events occur during the monitoring period, release of these reserve credits is at the discretion of the NCIRT.
- B. For mitigation banks, implementation of the approved Mitigation Plan must be initiated no later than the first full growing season after the date of the first credit transaction (credit sale).
- C. After the second milestone, the credit releases are scheduled to occur on an annual basis, assuming that the annual monitoring report has been provided to the USACE in accordance with Section IV (General Monitoring Requirements) of this document, and that the monitoring report demonstrates that interim performance standards are being met and that no other concerns have been identified on-site during the visual monitoring. All credit releases require written approval from the USACE.
- D. The credits associated with the final credit release milestone will be released only upon a determination by the USACE, in consultation with the NCIRT, of functional success as defined in the Mitigation Plan.

Credit Release Milestone	Credit Release Activity	Interim Release	Total Released
1	Site Establishment (includes all required criteria stated above)	0%	0%
2	Completion of all initial physical and biological improvements made pursuant to the Mitigation Plan	30%	30%
3	Year 1 monitoring report demonstrates performance	10%	40%

Credit Release Schedule – Stream Credits

Credit Release Milestone	Credit Release Activity	Interim Release	Total Released
	standards have been met		
4	Year 2 monitoring report demonstrates performance standards have been met	10%	50%
5	Year 3 monitoring report demonstrates performance standards have been met	10%	60%
6	Year 4 monitoring report demonstrates performance standards have been met	5%	65% (75%**)
7	Year 5 monitoring report demonstrates performance standards have been met	15%	75% (85%**)
8*	Year 6 monitoring report demonstrates performance standards have been met	5%	80% (90**)
9	Year 7 monitoring report demonstrates performance standards have been met	10%	90% (100**)

*Please note that vegetation data may not be required with monitoring reports submitted during these monitoring years unless otherwise required by the Mitigation Plan or directed by the NCIRT.

**10% reserve of credits to be held back until the bankfull event performance standard has been met.

Appendix 8

Site Protection Instrument

The land required for construction, management, and stewardship of this mitigation project includes portions of the parcels listed in Table 1. This area totals 22.2 acres. The deed book and page number listed are for the agreements on an option to purchase a conservation easement. A conservation easement will be recorded on the parcels and includes streams being restored along with their corresponding riparian buffers.

Property Owner	Parcel ID Number	County	Site Protection Instrument	Memorandum of Option Deed Book (DB) and Page Number (PG)
Horace Randle Wood	4914-42-2297	Wilkes	CE	DB: 1156, PG: 106
Horace Randle Wood	4914-51-6430	Wilkes	CE	DB: 1156, PG: 106
Horace Randle Wood	4914-62-7075	Wilkes	CE	DB: 1156, PG: 106
Horace Randle Wood	4914-51-2940	Wilkes	CE	DB: 1156, PG: 106
Hilda Gaye Lyon Swaim Life Estate and Nathan Harold Swaim	4914-31-4177	Wilkes	CE	DB: 1293, PG: 46

Table 1: Site Protection Instrument

All site protection instruments require 60-day advance notification to the USACE and or DMS prior to any action to void, amend, or modify the document. No such action shall take place unless approved by the State.

Appendix 9

Financial Assurances

Pursuant to Section IV H and Appendix III of the Division of Mitigation Service's In-Lieu Fee Instrument dated July 28, 2010, the North Carolina Department of Environment and Natural Resources has provided the US Army Corps of Engineers Wilmington District with a formal commitment to fund projects to satisfy mitigation requirements assumed by DMS. This commitment provides financial assurance for all mitigation projects implemented by the program.

Appendix 10

Maintenance Plan

The site shall be monitored on a regular basis and a physical inspection of the site shall be conducted a minimum of once per year throughout the post-construction monitoring period until performance standards are met. These site inspections may identify site components and features that require routine maintenance. Routine maintenance should be expected most often in the first two (2) years following site construction and may include the following:

Component/Feature	Maintenance through project close-out
	Routine channel maintenance and repair activities may include chinking of in-stream
	structures to prevent piping, securing of loose coir matting, and supplemental
Stream	installations of live stakes and other target vegetation along the channel. Areas where
Stream	storm water and floodplain flows intercept the channel may also require maintenance to
	prevent bank erosion. If beaver become active on the site, Wildlands will contract with
	the USDA to trap the beaver and remover the dams.
	Vegetation shall be maintained to ensure the health and vigor of the targeted
	community. Routine vegetation maintenance and repair activities may include
Vegetation	supplemental planting, pruning, mulching, and fertilizing. Exotic invasive plant species
Vegetation	shall be controlled by mechanical and/or chemical methods. Any vegetation control
	requiring herbicide application will be performed in accordance with NC Department of
	Agriculture (NCDA) rules and regulations.
	Site boundaries shall be identified in the field to ensure clear distinction between the
	mitigation site and adjacent properties. Boundaries may be identified by fence, marker,
Site boundary	bollard, post, tree-blazing, or other means as allowed by site conditions and/or
	conservation easement. Boundary markers disturbed, damaged, or destroyed will be
	repaired and/or replaced on an as-needed basis.

Table1: Maintenance Plan